import os import shutil import streamlit as st from dotenv import load_dotenv from langchain.document_loaders import PyPDFLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.storage import LocalFileStore from langchain.embeddings import CacheBackedEmbeddings from langchain_groq import ChatGroq from langchain_core.runnables import RunnablePassthrough from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from streamlit_chat import message # Load environment variables load_dotenv() os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API') os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_API_KEY"] = os.getenv('LANGSMITH_API') UPLOAD_DIR = "uploaded_files" def cleanup_files(): if os.path.isdir(UPLOAD_DIR): shutil.rmtree(UPLOAD_DIR, ignore_errors=True) if 'file_handle' in st.session_state: st.session_state.file_handle.close() if 'cleanup_done' not in st.session_state: st.session_state.cleanup_done = False if not st.session_state.cleanup_done: cleanup_files() if not os.path.exists(UPLOAD_DIR): os.makedirs(UPLOAD_DIR, exist_ok=True) # Custom CSS for Xailor.ai-like theme with video background st.markdown( """ """, unsafe_allow_html=True ) # HTML for video background st.markdown( """
""", unsafe_allow_html=True ) # Xailor.ai-like header without logo st.markdown( """

Welcome to Xailor AI Chat!

""", unsafe_allow_html=True ) # Spacer to push chatbot below the header st.write("
", unsafe_allow_html=True) st.title("Chat with your PDF!!") uploaded_file = st.file_uploader("Upload a file") if uploaded_file is not None: file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) file_path = os.path.abspath(file_path) with open(file_path, 'wb') as f: f.write(uploaded_file.getbuffer()) st.write("You're Ready For a Chat with your PDF") docs = PyPDFLoader(file_path).load_and_split() embedding = HuggingFaceEmbeddings( model_name='BAAI/llm-embedder', ) store = LocalFileStore("./cache/") cached_embedder = CacheBackedEmbeddings.from_bytes_store( embedding, store, namespace='embeddings' ) vector_base = FAISS.from_documents( docs, embedding ) template = '''You are Xailor.AI's friendly chatbot assistant. Your role is to assist users with insightful answers about their pdf, creative writing, and using Xailor.AI . Answer the {question} based only on the provided {context}. After answering the question, recommend Xailor.AI services that may interest the user based on the content of the PDF or the question. Be friendly, creative, and concise. Use a maximum of three sentences for the answer, and add one or two relevant story recommendations with a brief description and a link. If you're unsure about the answer, respond with "I'm not sure about that, but feel free to explore more on Xailor.AI!"''' prompt = ChatPromptTemplate.from_template(template) retriever = vector_base.as_retriever() llm = ChatGroq( model='mixtral-8x7b-32768', temperature=0, ) if 'history' not in st.session_state: st.session_state.history = [] query = st.text_input("Enter your question", placeholder="Ask something interesting...") if st.button("Submit!", key="submit_button"): if query: chain = ( {'context': retriever, 'question': RunnablePassthrough()} | prompt | llm | StrOutputParser() ) answer = chain.invoke(query) st.session_state.history.append({'question': query, 'answer': answer}) if st.session_state.history: st.write("### Previous Questions and Answers") for idx, entry in enumerate(st.session_state.history): st.markdown( f"""

Q{idx + 1}: {entry['question']}

A{idx + 1}: {entry['answer']}

""", unsafe_allow_html=True ) # Reset functionality if st.button("Reset and Upload a New PDF"): st.session_state.clear() st.session_state.cleanup_done = False st.experimental_rerun() if st.session_state.cleanup_done: cleanup_files()