File size: 10,534 Bytes
3f1bb3e bd93c04 3f1bb3e 1fb67a9 3f1bb3e a134e44 3f1bb3e 1fb67a9 3f1bb3e 1fb67a9 3f1bb3e 1fb67a9 3f1bb3e 1fb67a9 a134e44 1fb67a9 8b5e39e 7b5b426 8b5e39e 0971307 8b5e39e 7b5b426 8b5e39e d888ff9 8b5e39e d888ff9 7b5b426 8b5e39e d888ff9 8b5e39e d888ff9 8b5e39e bd93c04 0971307 bd93c04 1857544 c0b5959 d888ff9 a2d536f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
import numpy as np
from PIL import Image
import cv2 as cv
from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
# from transformers.models.detr.feature_extraction_detr import rgb_to_id
from transformers.image_transforms import rgb_to_id
TEST_IMAGE = Image.open(r"images/9999999_00783_d_0000358.jpg")
MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic"
MODEL_NAME_MASKFORMER = "facebook/maskformer-swin-large-coco"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#######
# Parameters
#######
image = TEST_IMAGE
model_name = MODEL_NAME_MASKFORMER
# Starting with MaskFormer
processor = MaskFormerImageProcessor.from_pretrained(model_name) # <class 'transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor'>
# DIR() --> ['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
# '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
# '__weakref__', '_auto_class', '_create_repo', '_get_files_timestamps', '_max_size', '_pad_image', '_preprocess', '_preprocess_image', '_preprocess_mask', '_processor_class',
# '_set_processor_class', '_upload_modified_files', 'center_crop', 'convert_segmentation_map_to_binary_masks', 'do_normalize', 'do_reduce_labels', 'do_rescale', 'do_resize',
# 'encode_inputs', 'fetch_images', 'from_dict', 'from_json_file', 'from_pretrained', 'get_image_processor_dict', 'ignore_index', 'image_mean', 'image_std', 'model_input_names',
# 'normalize', 'pad', 'post_process_instance_segmentation', 'post_process_panoptic_segmentation', 'post_process_segmentation', 'post_process_semantic_segmentation', 'preprocess',
# 'push_to_hub', 'register_for_auto_class', 'resample', 'rescale', 'rescale_factor', 'resize', 'save_pretrained', 'size', 'size_divisor', 'to_dict', 'to_json_file', 'to_json_string']
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentation'>
# DIR for model was too big
model.to(DEVICE)
# img = np.array(TEST_IMAGE)
inputs = processor(images=image, return_tensors="pt") # <class 'transformers.image_processing_utils.BatchFeature'>
# DIR() --> ['_MutableMapping__marker', '__abstractmethods__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
# '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__',
# '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__slots__', '__str__',
# '__subclasshook__', '__weakref__', '_abc_impl', '_get_is_as_tensor_fns', 'clear', 'convert_to_tensors', 'copy', 'data', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem',
# 'setdefault', 'to', 'update', 'values']
inputs.to(DEVICE)
outputs = model(**inputs) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentationOutput'>
# Each element of this class is a <class 'torch.Tensor'>
# DIR() --> ['__annotations__', '__class__', '__contains__', '__dataclass_fields__', '__dataclass_params__', '__delattr__', '__delitem__', '__dict__', '__dir__',
# '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__',
# '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__post_init__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__',
# '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'attentions', 'auxiliary_logits', 'class_queries_logits', 'clear', 'copy', 'encoder_hidden_states',
# 'encoder_last_hidden_state', 'fromkeys', 'get', 'hidden_states', 'items', 'keys', 'loss', 'masks_queries_logits', 'move_to_end', 'pixel_decoder_hidden_states',
# 'pixel_decoder_last_hidden_state', 'pop', 'popitem', 'setdefault', 'to_tuple', 'transformer_decoder_hidden_states', 'transformer_decoder_last_hidden_state',
# 'update', 'values']
results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# <class 'dict'>
# Keys: dict_keys(['segmentation', 'segments_info'])
# type(results["segments_info"]) --> list
# type(results["segmentation"]) --> <class 'torch.Tensor'>
def show_mask_for_number(map_to_use, label_id):
"""
map_to_use: You have to pass in `results["segmentation"]`
"""
if torch.cuda.is_available():
mask = (map_to_use.cpu().numpy() == label_id)
else:
mask = (map_to_use.numpy() == label_id)
visual_mask = (mask* 255).astype(np.uint8)
visual_mask = Image.fromarray(visual_mask)
plt.imshow(visual_mask)
plt.show()
def show_mask_for_number_over_image(map_to_use, label_id, image_object):
"""
map_to_use: You have to pass in `results["segmentation"]`
"""
if torch.cuda.is_available():
mask = (map_to_use.cpu().numpy() == label_id)
else:
mask = (map_to_use.numpy() == label_id)
visual_mask = (mask* 255).astype(np.uint8)
visual_mask = Image.fromarray(visual_mask)
plt.imshow(image_object)
plt.imshow(visual_mask, alpha=0.25)
plt.show()
def get_coordinates_for_bb_simple(map_to_use, label_id):
"""
map_to_use: You have to pass in `results["segmentation"]`
"""
if torch.cuda.is_available():
mask = (map_to_use.cpu().numpy() == label_id)
else:
mask = (map_to_use.numpy() == label_id)
y_vals, x_vals = np.where(mask==True)
x_max, x_min = max(x_vals), min(x_vals)
y_max, y_min = max(y_vals), min(y_vals)
return (x_min, y_min), (x_max, y_max)
def make_simple_box(left_top, right_bottom, map_size):
full_mask = np.full(map_size, False)
left_x, top_y = left_top
right_x, bottom_y = right_bottom
full_mask[left_x:right_x, top_y] = True
full_mask[left_x:right_x, bottom_y] = True
full_mask[left_x, top_y:bottom_y] = True
full_mask[right_x, top_y:bottom_y] = True
visual_mask = (full_mask* 255).astype(np.uint8)
visual_mask = Image.fromarray(visual_mask)
plt.imshow(visual_mask)
plt.show()
def map_bounding_box_draw(map_to_use, label_id, img_obj=TEST_IMAGE):
"""
map_to_use: You have to pass in `results["segmentation"]`
"""
if torch.cuda.is_available():
mask = (map_to_use.cpu().numpy() == label_id)
else:
mask = (map_to_use.numpy() == label_id)
lt, rb = get_coordinates_for_bb_simple(map_to_use, label_id)
left_x, top_y = lt
right_x, bottom_y = rb
mask[top_y, left_x:right_x] = .5
mask[bottom_y, left_x:right_x] = .5
mask[ top_y:bottom_y, left_x] = .5
mask[ top_y:bottom_y, right_x] = .5
visual_mask = (mask* 255).astype(np.uint8)
visual_mask = Image.fromarray(visual_mask)
plt.imshow(img_obj)
plt.imshow(visual_mask, alpha=0.25)
plt.show()
def contour_map(map_to_use, label_id):
"""
map_to_use: You have to pass in `results["segmentation"]`
"""
if torch.cuda.is_available():
mask = (map_to_use.cpu().numpy() == label_id)
else:
mask = (map_to_use.numpy() == label_id)
visual_mask = (mask* 255).astype(np.uint8)
contours, hierarchy = cv.findContours(visual_mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
return contours, hierarchy
# https://docs.opencv.org/4.9.0/dd/d49/tutorial_py_contour_features.html
# Idea for determining if close
# https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
# Bing Search: cv determine if 2 contours belong together
def find_if_close(contour1, contour2, c_dist=50):
"""
Source: https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
"""
row1, row2 = contour1.shape[0], contour2.shape[0]
for i in range(row1):
for j in range(row2):
dist = np.linalg.norm(contour1[i]-contour2[j])
if abs(dist) < c_dist:
return True
elif i == (row1-1) and j == (row2-1):
return False
def make_new_bounding_box(bb1, bb2):
x1, y1, w1, h1 = bb1
x2, y2, w2, h2 = bb2
new_x = min(x1, x2)
new_y = min(y1, y2)
new_w = abs(max(x1+w1, x2+w2) - new_x)
new_h = abs(max(y1+h1, y2+h2) - new_y)
return (new_x, new_y, new_w, new_h)
def map_bounding_box_draw(map_to_use, label_id, img_obj=TEST_IMAGE, v="cv"):
"""
map_to_use: You have to pass in `results["segmentation"]`
v: version of bounding box
cv, coord
"""
if torch.cuda.is_available():
mask = (map_to_use.cpu().numpy() == label_id)
else:
mask = (map_to_use.numpy() == label_id)
if v == "cv":
c, v = contour_map(map_to_use, label_id)
x, y, w, h = make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
lt = (x, y)
rb = (x + w, y + h)
left_x, top_y = lt
right_x, bottom_y = rb
elif v == "coord":
lt, rb = get_coordinates_for_bb_simple(map_to_use, label_id)
left_x, top_y = lt
right_x, bottom_y = rb
else:
print(f"Not available `v` command {v}")
return
mask[top_y, left_x:right_x] = .5
mask[bottom_y, left_x:right_x] = .5
mask[ top_y:bottom_y, left_x] = .5
mask[ top_y:bottom_y, right_x] = .5
visual_mask = (mask* 255).astype(np.uint8)
visual_mask = Image.fromarray(visual_mask)
plt.imshow(img_obj)
plt.imshow(visual_mask, alpha=0.25)
plt.show(block=False)
def manual_looking(id_number):
c, _ = contour_map(results["segmentation"], id_number)
print(f'{model.config.id2label[results["segments_info"][id_number-1]["label_id"]]}, {results["segments_info"][id_number -1]["score"]}, Contour Count: {len(c)}')
show_mask_for_number_over_image(results["segmentation"],id_number, TEST_IMAGE) |