File size: 8,042 Bytes
3c413eb 3f88c96 3a9ef72 3f88c96 b421c59 3c413eb b444b25 af6274d 3c413eb e3ab040 3f88c96 e3ab040 f0a60b1 8b5e39e f0a60b1 bdfaed1 8b5e39e 3f88c96 5e0bcd2 3f88c96 b421c59 3f88c96 b421c59 8b5e39e e3ab040 3a9ef72 e3ab040 3c413eb 510b4f7 3c413eb b421c59 eb89830 3c413eb 3a9ef72 3c413eb bf2198c 3c413eb c6a0d24 5009ca6 c6a0d24 3c413eb bf2198c 3a9ef72 c6a0d24 3c413eb 039cf73 7e429a8 3c413eb 4048622 3c413eb c17e51b 3c413eb 4048622 7e429a8 c6a0d24 51fa25e 3bef0e5 3c413eb f86c37f 3fff89b e3ab040 7e429a8 e3ab040 7e429a8 3c413eb 039cf73 3c413eb 3d13e8e 16c3b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
import cv2 as cv
import numpy as np
from transformers import DetrImageProcessor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from transformers.image_transforms import id_to_rgb
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf, bbox_inches="tight")
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
# print("Labels " + str(labels))
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def contour_map(map_to_use, label_id):
mask = (map_to_use.cpu().numpy() == label_id)
visual_mask = (mask * 255).astype(np.uint8)
contours, hierarchy = cv.findContours(visual_mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
return contours, hierarchy
def segment_images(model_name,url_input,image_input,threshold):
####
# Get Image Object
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
elif image_input:
image = image_input
####
if "detr" in model_name:
pass
elif "maskformer" in model_name.lower():
# Load the processor and model
processor = MaskFormerImageProcessor.from_pretrained(model_name)
# print(type(processor))
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
return_string = ""
for r in results["segments_info"]:
contour_list, hierarchy = contour_map(results["segmentation"], r["id"])
label_name = model.config.id2label[r["label_id"]]
return_string += f"ID: {r['id']}\t Contour Count: {len(contour_list)}\t Score: {r['score']}\t Label Name: {label_name},\n"
r_shape = results["segmentation"].shape
new_image = np.zeros((r[0], r[1], 3), dtype=np.uint8)
new_image[:, :, 0] = results["segmentation"].numpy()[:, :]
new_image[:, :, 1] = (new_image[:, :, 0] * 2) %256
new_image[:, :, 2] = (new_image[:, :, 0] * 3) %256
new_image = Image.fromarray(new_image)
return new_image, return_string
pass
else:
raise NameError("Model is not implemented")
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0])
title = """<h1 id="title">Image Segmentation with Various Models</h1>"""
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50-panoptic](https://huggingface.co/facebook/detr-resnet-50-panoptic) (Not implemented YET)
- [facebook/detr-resnet-101-panoptic](https://huggingface.co/facebook/detr-resnet-101-panoptic) (Not implemented YET)
- [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco)
"""
models = ["facebook/detr-resnet-50-panoptic","facebook/detr-resnet-101-panoptic","facebook/maskformer-swin-large-coco"]
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
def changing():
# https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4
return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
with demo:
gr.Markdown(title)
gr.Markdown(description)
# gr.Markdown(twitter_link)
options = gr.Dropdown(choices=models,label='Select Image Segmentation Model',show_label=True)
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image URL'):
with gr.Row():
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
img_output_from_url = gr.Image(shape=(650,650))
with gr.Row():
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
url_but = gr.Button('Detect', interactive=False)
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(shape=(650,650))
with gr.Row():
example_images = gr.Dataset(components=[img_input],
samples=[[path.as_posix()]
for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work
img_but = gr.Button('Detect', interactive=False)
# output_text1 = gr.outputs.Textbox(label="Confidence Values")
output_text1 = gr.components.Textbox(label="Confidence Values")
# https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
options.change(fn=changing, inputs=[], outputs=[img_but, url_but])
url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
# url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
# img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
# url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
# img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
# gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True) |