File size: 6,843 Bytes
a206cd8 c0b5959 d888ff9 a2d536f b421c59 a2d536f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
"""
# How to get ID
>>> model.config.id2label
{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter',
13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket',
39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza',
54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone',
68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush', 80: 'banner', 81: 'blanket',
82: 'bridge', 83: 'cardboard', 84: 'counter', 85: 'curtain', 86: 'door-stuff', 87: 'floor-wood', 88: 'flower', 89: 'fruit', 90: 'gravel', 91: 'house', 92: 'light', 93: 'mirror-stuff', 94: 'net', 95: 'pillow',
96: 'platform', 97: 'playingfield', 98: 'railroad', 99: 'river', 100: 'road', 101: 'roof', 102: 'sand', 103: 'sea', 104: 'shelf', 105: 'snow', 106: 'stairs', 107: 'tent', 108: 'towel', 109: 'wall-brick',
110: 'wall-stone', 111: 'wall-tile', 112: 'wall-wood', 113: 'water-other', 114: 'window-blind', 115: 'window-other', 116: 'tree-merged', 117: 'fence-merged', 118: 'ceiling-merged', 119: 'sky-other-merged',
120: 'cabinet-merged', 121: 'table-merged', 122: 'floor-other-merged', 123: 'pavement-merged', 124: 'mountain-merged', 125: 'grass-merged', 126: 'dirt-merged', 127: 'paper-merged', 128: 'food-other-merged',
129: 'building-other-merged', 130: 'rock-merged', 131: 'wall-other-merged', 132: 'rug-merged'}
>>> model.config.id2label[123]
'pavement-merged'
>>> results["segments_info"][1]
{'id': 2, 'label_id': 123, 'was_fused': False, 'score': 0.995813}
"""
# Above labels don't correspond to anything ... https://github.com/nightrome/cocostuff/blob/master/labels.md
# This one was closest to helping: https://github.com/NielsRogge/Transformers-Tutorials/blob/master/MaskFormer/Inference/Inference_with_MaskFormer_for_semantic_%2B_panoptic_segmentation.ipynb
"""
>>> Image.fromarray((mask * 255).cpu().numpy().astype(np.uint8))
<PIL.Image.Image image mode=L size=2000x1500 at 0x7F07773691C0>
>>> temp = Image.fromarray((mask * 255).cpu().numpy().astype(np.uint8))
"""
"""
>>> mask = (results["segmentation"].cpu().numpy == 4)
>>> mask = (results["segmentation"].cpu().numpy() == 4)
>>> mask
array([[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]])
>>> visual_mask = (mask * 255).astype(np.uint8)
>>> visual_mask = Image.fromarray(visual_mask)
>>> plt.imshow(visual_mask)
<matplotlib.image.AxesImage object at 0x7f0761e78040>
>>> plt.show()
"""
"""
>>> mask = (results["segmentation"].cpu().numpy() == 1)
>>> visual_mask = (mask*255).astype(np.uint8)
>>> visual_mask = Image.fromarray(visual_mask)
>>> plt.imshow(visual_mask)
<matplotlib.image.AxesImage object at 0x7f0760298550>
>>> plt.show()
>>> results["segments_info"][0]
{'id': 1, 'label_id': 25, 'was_fused': False, 'score': 0.998022}
>>>
"""
"""
>>> np.where(mask==True)
(array([300, 300, 300, ..., 392, 392, 392]), array([452, 453, 454, ..., 473, 474, 475]))
>>> max(np.where(mask==True)[0])
392
>>> min(np.where(mask==True)[0])
300
>>> max(np.where(mask==True)[1])
538
>>> min(np.where(mask==True)[1])
399
"""
"""
>>> mask = (results["segmentation"].cpu().numpy() == 1)
>>> visual_mask = (mask* 255).astype(np.uint8)
>>> import cv2 as cv
>>> contours, hierarchy = cv.findContours(visual_mask, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
>>> contours.shape
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'shape'
>>> contours[0].shape
(7, 1, 2)
>>> shrunk = contours[0][:, 0, :]
>>> shrunk
array([[400, 340],
[399, 341],
[400, 342],
[401, 342],
[402, 341],
[403, 341],
[402, 340]], dtype=int32)
>>> get_coordinates_for_bb_simple(results["segmentation"], 1)
((300, 399), (392, 538))
>>> shrunk = contours[1][:, 0, :]
>>> max(shrunk[:, 0])
538
>>> min(shrunk[:, 0])
409
>>> min(shrunk[:, 1])
300
>>> max(shrunk[:, 1])
392
>>>
"""
"""
import cv2 as cv
contours, hierarchy = cv.findContours(visual_mask, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
shrunk = contours[0][:, 0, :]
>>> shrunk[0, :]
array([1907, 887], dtype=int32)
>>> shrunk[:, 0]
array([1907, 1907, 1908, 1908, 1908], dtype=int32)
>>> shrunk[:, 1]
array([887, 888, 889, 890, 888], dtype=int32)
>>> shrunk
array([[1907, 887],
[1907, 888],
[1908, 889],
[1908, 890],
[1908, 888]], dtype=int32)
"""
"""
>>> cv.boundingRect(c[0])
(399, 340, 5, 3)
>>> get_coordinates_for_bb_simple(results["segmentation"], 1)
((399, 300), (538, 392))
>>> make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
(399, 300, 140, 93)
>>> cv.boundingRect(c[0])
(399, 340, 5, 3)
>>> cv.boundingRect(c[1])
(409, 300, 130, 93)
"""
"""
for r in results["segments_info"]:
... current_id = r["id"]
... c, _ = contour_map(results["segmentation"], current_id)
... print(f"id {current_id}, label = {model.config.id2label[r['label_id']]}({r['label_id']}) -- {len(c)}")
"""
"""
def quick_function(id_number):
... c, _ = contour_map(results["segmentation"], id_number)
... print(f'{model.config.id2label[results["segments_info"][id_number-1]["label_id"]]}, {results["segments_info"][id_number -1]["score"]}, Contour Count: {len(c)}')
... show_mask_for_number_over_image(results["segmentation"],id_number, TEST_IMAGE)
...
"""
"""
>>> m = results["segmentation"].cpu().numpy()
>>> new_dim = (m[0], m[1], 3)
>>> new_dim
(array([43, 43, 43, ..., 21, 21, 21], dtype=int32), array([43, 43, 43, ..., 21, 21, 21], dtype=int32), 3)
>>> new_dim = (m.shape[0], m.shape[1], 3)
>>> all_z = np.zeros(new_dim, dtype=np.uint8)
>>> z = np.zeros((m.shape[0], m.shape[1], 3), dtype=np.uint8)
>>> z[:, :, 0] = m[:, :]
>>> z[0,0]
array([43, 0, 0], dtype=uint8)
>>> z[0, 0]
array([43, 0, 0], dtype=uint8)
>>> m[0, 0]
43
""" |