File size: 6,843 Bytes
a206cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0b5959
 
 
 
 
d888ff9
 
 
 
 
 
 
 
 
 
a2d536f
 
 
 
 
 
 
 
 
 
 
 
 
 
b421c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d536f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175


"""
# How to get ID
>>> model.config.id2label
{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 
13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 
39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 
54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 
68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush', 80: 'banner', 81: 'blanket', 
82: 'bridge', 83: 'cardboard', 84: 'counter', 85: 'curtain', 86: 'door-stuff', 87: 'floor-wood', 88: 'flower', 89: 'fruit', 90: 'gravel', 91: 'house', 92: 'light', 93: 'mirror-stuff', 94: 'net', 95: 'pillow', 
96: 'platform', 97: 'playingfield', 98: 'railroad', 99: 'river', 100: 'road', 101: 'roof', 102: 'sand', 103: 'sea', 104: 'shelf', 105: 'snow', 106: 'stairs', 107: 'tent', 108: 'towel', 109: 'wall-brick', 
110: 'wall-stone', 111: 'wall-tile', 112: 'wall-wood', 113: 'water-other', 114: 'window-blind', 115: 'window-other', 116: 'tree-merged', 117: 'fence-merged', 118: 'ceiling-merged', 119: 'sky-other-merged', 
120: 'cabinet-merged', 121: 'table-merged', 122: 'floor-other-merged', 123: 'pavement-merged', 124: 'mountain-merged', 125: 'grass-merged', 126: 'dirt-merged', 127: 'paper-merged', 128: 'food-other-merged', 
129: 'building-other-merged', 130: 'rock-merged', 131: 'wall-other-merged', 132: 'rug-merged'}
>>> model.config.id2label[123]
'pavement-merged'
>>> results["segments_info"][1]
{'id': 2, 'label_id': 123, 'was_fused': False, 'score': 0.995813}
""" 
# Above labels don't correspond to anything ... https://github.com/nightrome/cocostuff/blob/master/labels.md
# This one was closest to helping: https://github.com/NielsRogge/Transformers-Tutorials/blob/master/MaskFormer/Inference/Inference_with_MaskFormer_for_semantic_%2B_panoptic_segmentation.ipynb

"""
>>> Image.fromarray((mask * 255).cpu().numpy().astype(np.uint8))
<PIL.Image.Image image mode=L size=2000x1500 at 0x7F07773691C0>
>>> temp = Image.fromarray((mask * 255).cpu().numpy().astype(np.uint8))
"""

"""
>>> mask = (results["segmentation"].cpu().numpy == 4)
>>> mask = (results["segmentation"].cpu().numpy() == 4)
>>> mask
array([[False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       ...,
       [False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False]])
>>> visual_mask = (mask * 255).astype(np.uint8)
>>> visual_mask = Image.fromarray(visual_mask)
>>> plt.imshow(visual_mask)
<matplotlib.image.AxesImage object at 0x7f0761e78040>
>>> plt.show()
"""

"""
>>> mask = (results["segmentation"].cpu().numpy() == 1)
>>> visual_mask = (mask*255).astype(np.uint8)
>>> visual_mask = Image.fromarray(visual_mask)
>>> plt.imshow(visual_mask)
<matplotlib.image.AxesImage object at 0x7f0760298550>
>>> plt.show()
>>> results["segments_info"][0]
{'id': 1, 'label_id': 25, 'was_fused': False, 'score': 0.998022}
>>> 
"""

"""
>>> np.where(mask==True)
(array([300, 300, 300, ..., 392, 392, 392]), array([452, 453, 454, ..., 473, 474, 475]))
>>> max(np.where(mask==True)[0])
392
>>> min(np.where(mask==True)[0])
300
>>> max(np.where(mask==True)[1])
538
>>> min(np.where(mask==True)[1])
399
"""


"""
>>> mask = (results["segmentation"].cpu().numpy() == 1)
>>> visual_mask = (mask* 255).astype(np.uint8)
>>> import cv2 as cv
>>> contours, hierarchy = cv.findContours(visual_mask, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
>>> contours.shape
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'shape'
>>> contours[0].shape
(7, 1, 2)
>>> shrunk = contours[0][:, 0, :]
>>> shrunk
array([[400, 340],
       [399, 341],
       [400, 342],
       [401, 342],
       [402, 341],
       [403, 341],
       [402, 340]], dtype=int32)
>>> get_coordinates_for_bb_simple(results["segmentation"], 1)
((300, 399), (392, 538))
>>> shrunk = contours[1][:, 0, :]
>>> max(shrunk[:, 0])
538
>>> min(shrunk[:, 0])
409
>>> min(shrunk[:, 1])
300
>>> max(shrunk[:, 1])
392
>>> 
"""



"""
import cv2 as cv
contours, hierarchy = cv.findContours(visual_mask, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
shrunk = contours[0][:, 0, :]

>>> shrunk[0, :]
array([1907,  887], dtype=int32)
>>> shrunk[:, 0]
array([1907, 1907, 1908, 1908, 1908], dtype=int32)
>>> shrunk[:, 1]
array([887, 888, 889, 890, 888], dtype=int32)
>>> shrunk
array([[1907,  887],
       [1907,  888],
       [1908,  889],
       [1908,  890],
       [1908,  888]], dtype=int32)
"""

"""
>>> cv.boundingRect(c[0])
(399, 340, 5, 3)

>>> get_coordinates_for_bb_simple(results["segmentation"], 1)
((399, 300), (538, 392))
>>> make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
(399, 300, 140, 93)
>>> cv.boundingRect(c[0])
(399, 340, 5, 3)
>>> cv.boundingRect(c[1])
(409, 300, 130, 93)
"""

"""
for r in results["segments_info"]:
...     current_id = r["id"]
...     c, _ = contour_map(results["segmentation"], current_id)
...     print(f"id {current_id}, label = {model.config.id2label[r['label_id']]}({r['label_id']}) -- {len(c)}")
"""

"""
def quick_function(id_number):
...     c, _ = contour_map(results["segmentation"], id_number)
...     print(f'{model.config.id2label[results["segments_info"][id_number-1]["label_id"]]}, {results["segments_info"][id_number -1]["score"]}, Contour Count: {len(c)}')
...     show_mask_for_number_over_image(results["segmentation"],id_number, TEST_IMAGE)
... 
"""

"""
>>> m = results["segmentation"].cpu().numpy()
>>> new_dim = (m[0], m[1], 3)
>>> new_dim
(array([43, 43, 43, ..., 21, 21, 21], dtype=int32), array([43, 43, 43, ..., 21, 21, 21], dtype=int32), 3)
>>> new_dim = (m.shape[0], m.shape[1], 3)
>>> all_z = np.zeros(new_dim, dtype=np.uint8)

>>> z = np.zeros((m.shape[0], m.shape[1], 3), dtype=np.uint8)
>>> z[:, :, 0] = m[:, :]
>>> z[0,0]
array([43,  0,  0], dtype=uint8)
>>> z[0, 0]
array([43,  0,  0], dtype=uint8)
>>> m[0, 0]
43
"""