Pulling from 2 different places to get this to work and not updating variable names
Browse files
app.py
CHANGED
@@ -32,12 +32,12 @@ def detect_objects(model_name,url_input,image_input,threshold):
|
|
32 |
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
|
33 |
|
34 |
target_size = (image.size[0], image.size[1])
|
35 |
-
inputs =
|
36 |
with torch.no_grad():
|
37 |
outputs = model(**inputs)
|
38 |
outputs.class_queries_logits = outputs.class_queries_logits.cpu()
|
39 |
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
|
40 |
-
results =
|
41 |
results = torch.argmax(results, dim=0).numpy()
|
42 |
results = visualize_instance_seg_mask(results)
|
43 |
return results, "EMPTY"
|
|
|
32 |
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
|
33 |
|
34 |
target_size = (image.size[0], image.size[1])
|
35 |
+
inputs = processor(images=image, return_tensors="pt")
|
36 |
with torch.no_grad():
|
37 |
outputs = model(**inputs)
|
38 |
outputs.class_queries_logits = outputs.class_queries_logits.cpu()
|
39 |
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
|
40 |
+
results = processor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach()
|
41 |
results = torch.argmax(results, dim=0).numpy()
|
42 |
results = visualize_instance_seg_mask(results)
|
43 |
return results, "EMPTY"
|