Spaces:
Running
Running
from PIL import Image | |
import torch | |
from huggingface_hub import hf_hub_download | |
# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583 | |
# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers | |
from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation | |
# load DepthPro model, used as backbone | |
config = DepthProConfig( | |
patch_size=32, | |
patch_embeddings_size=4, | |
num_hidden_layers=12, | |
intermediate_hook_ids=[11, 8, 7, 5], | |
intermediate_feature_dims=[256, 256, 256, 256], | |
scaled_images_ratios=[0.5, 1.0], | |
scaled_images_overlap_ratios=[0.5, 0.25], | |
scaled_images_feature_dims=[1024, 512], | |
use_fov_model=False, | |
) | |
depthpro_for_depth_estimation = DepthProForDepthEstimation(config) | |
# create DepthPro for super resolution | |
class DepthProForSuperResolution(torch.nn.Module): | |
def __init__(self, depthpro_for_depth_estimation): | |
super().__init__() | |
self.depthpro_for_depth_estimation = depthpro_for_depth_estimation | |
hidden_size = self.depthpro_for_depth_estimation.config.fusion_hidden_size | |
self.image_head = torch.nn.Sequential( | |
torch.nn.ConvTranspose2d( | |
in_channels=config.num_channels, | |
out_channels=hidden_size, | |
kernel_size=4, stride=2, padding=1 | |
), | |
torch.nn.ReLU(), | |
) | |
self.head = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
in_channels=hidden_size, | |
out_channels=hidden_size, | |
kernel_size=3, stride=1, padding=1 | |
), | |
torch.nn.ReLU(), | |
torch.nn.ConvTranspose2d( | |
in_channels=hidden_size, | |
out_channels=hidden_size, | |
kernel_size=4, stride=2, padding=1 | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
in_channels=hidden_size, | |
out_channels=self.depthpro_for_depth_estimation.config.num_channels, | |
kernel_size=3, stride=1, padding=1 | |
), | |
) | |
def forward(self, pixel_values): | |
# x is the low resolution image | |
x = pixel_values | |
encoder_features = self.depthpro_for_depth_estimation.depth_pro(x).features | |
fused_hidden_state = self.depthpro_for_depth_estimation.fusion_stage(encoder_features)[-1] | |
x = self.image_head(x) | |
x = torch.nn.functional.interpolate(x, size=fused_hidden_state.shape[2:]) | |
x = x + fused_hidden_state | |
x = self.head(x) | |
return x | |
# initialize the model | |
model = DepthProForSuperResolution(depthpro_for_depth_estimation) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
# load weights | |
weights_path = hf_hub_download(repo_id="geetu040/DepthPro_SR_4x_256p", filename="model_weights.pth") | |
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) | |
# load image processor | |
image_processor = DepthProImageProcessorFast( | |
do_resize=False, | |
do_rescale=True, | |
do_normalize=True | |
) | |
def predict(image): | |
# inference | |
image.thumbnail((256, 256)) # resizes the image object to fit within a 256x256 pixel box | |
# prepare image for the model | |
inputs = image_processor(images=image, return_tensors="pt") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# convert tensors to PIL.Image | |
output = outputs[0] # extract the first and only batch | |
output = output.cpu() # unload from cuda if used | |
output = torch.permute(output, (1, 2, 0)) # (C, H, W) -> (H, W, C) | |
output = output * 0.5 + 0.5 # undo normalization | |
output = output * 255. # undo scaling | |
output = output.clip(0, 255.) # fix out of range | |
output = output.numpy() # convert to numpy | |
output = output.astype('uint8') # convert to PIL.Image compatible format | |
output = Image.fromarray(output) # create PIL.Image object | |
return output | |