File size: 19,728 Bytes
d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 78c8b24 d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import argparse
import os
import random
import socket
import sqlite3
import time
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from torchvision.utils import make_grid, save_image
from transformers import AutoModelForCausalLM, AutoTokenizer
import safety_check
from sana_pipeline import SanaPipeline
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
#DEMO_PORT = int(os.getenv("DEMO_PORT", "15432"))
DEMO_PORT = int(os.getenv("DEMO_PORT", "7860"))
os.environ["GRADIO_EXAMPLES_CACHE"] = "./.gradio/cache"
COUNTER_DB = os.getenv("COUNTER_DB", ".count.db")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, "
"cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, "
"majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, "
"glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, "
"disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, "
"detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, "
"ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
SCHEDULE_NAME = ["Flow_DPM_Solver"]
DEFAULT_SCHEDULE_NAME = "Flow_DPM_Solver"
NUM_IMAGES_PER_PROMPT = 1
INFER_SPEED = 0
def norm_ip(img, low, high):
# Clone the tensor to avoid in-place modification on inference tensor
img = img.clone()
img.clamp_(min=low, max=high)
img.sub_(low).div_(max(high - low, 1e-5))
return img
def open_db():
db = sqlite3.connect(COUNTER_DB)
db.execute("CREATE TABLE IF NOT EXISTS counter(app CHARS PRIMARY KEY UNIQUE, value INTEGER)")
db.execute('INSERT OR IGNORE INTO counter(app, value) VALUES("Sana", 0)')
return db
def read_inference_count():
with open_db() as db:
cur = db.execute('SELECT value FROM counter WHERE app="Sana"')
db.commit()
return cur.fetchone()[0]
def write_inference_count(count):
count = max(0, int(count))
with open_db() as db:
db.execute(f'UPDATE counter SET value=value+{count} WHERE app="Sana"')
db.commit()
def run_inference(num_imgs=1):
write_inference_count(num_imgs)
count = read_inference_count()
return (
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: "
f"16px; color:red; font-weight: bold;'>{count}</span>"
)
def update_inference_count():
count = read_inference_count()
return (
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: "
f"16px; color:red; font-weight: bold;'>{count}</span>"
)
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config")
parser.add_argument(
"--model_path",
nargs="?",
default="hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth",
type=str,
help="Path to the model file (positional)",
)
parser.add_argument("--output", default="./", type=str)
parser.add_argument("--bs", default=1, type=int)
parser.add_argument("--image_size", default=1024, type=int)
parser.add_argument("--cfg_scale", default=5.0, type=float)
parser.add_argument("--pag_scale", default=2.0, type=float)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--step", default=-1, type=int)
parser.add_argument("--custom_image_size", default=None, type=int)
parser.add_argument("--share", action="store_true")
parser.add_argument(
"--shield_model_path",
type=str,
help="The path to shield model, we employ ShieldGemma-2B by default.",
default="google/shieldgemma-2b",
)
return parser.parse_known_args()[0]
args = get_args()
#================================================================================
# Adding this default argument for HF instance
#================================================================================
args.share = True
args.config = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml"
args.model_path = "hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth"
if torch.cuda.is_available():
weight_dtype = torch.float16
model_path = args.model_path
pipe = SanaPipeline(args.config)
pipe.from_pretrained(model_path)
pipe.register_progress_bar(gr.Progress())
# safety checker
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path)
safety_checker_model = AutoModelForCausalLM.from_pretrained(
args.shield_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
).to(device)
def save_image_sana(img, seed="", save_img=False):
unique_name = f"{str(uuid.uuid4())}_{seed}.png"
save_path = os.path.join(f"output/online_demo_img/{datetime.now().date()}")
os.umask(0o000) # file permission: 666; dir permission: 777
os.makedirs(save_path, exist_ok=True)
unique_name = os.path.join(save_path, unique_name)
if save_img:
save_image(img, unique_name, nrow=1, normalize=True, value_range=(-1, 1))
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@torch.no_grad()
@torch.inference_mode()
@spaces.GPU(enable_queue=True)
def generate(
prompt: str = None,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
num_imgs: int = 1,
seed: int = 0,
height: int = 1024,
width: int = 1024,
flow_dpms_guidance_scale: float = 5.0,
flow_dpms_pag_guidance_scale: float = 2.0,
flow_dpms_inference_steps: int = 20,
randomize_seed: bool = False,
):
global INFER_SPEED
# seed = 823753551
box = run_inference(num_imgs)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
print(f"PORT: {DEMO_PORT}, model_path: {model_path}")
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2):
prompt = "A red heart."
print(prompt)
num_inference_steps = flow_dpms_inference_steps
guidance_scale = flow_dpms_guidance_scale
pag_guidance_scale = flow_dpms_pag_guidance_scale
if not use_negative_prompt:
negative_prompt = None # type: ignore
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
pipe.progress_fn(0, desc="Sana Start")
time_start = time.time()
images = pipe(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
pag_guidance_scale=pag_guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_imgs,
generator=generator,
)
pipe.progress_fn(1.0, desc="Sana End")
INFER_SPEED = (time.time() - time_start) / num_imgs
save_img = False
if save_img:
img = [save_image_sana(img, seed, save_img=save_image) for img in images]
print(img)
else:
img = [
Image.fromarray(
norm_ip(img, -1, 1)
.mul(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to("cpu", torch.uint8)
.numpy()
.astype(np.uint8)
)
for img in images
]
torch.cuda.empty_cache()
return (
img,
seed,
f"<span style='font-size: 16px; font-weight: bold;'>Inference Speed: {INFER_SPEED:.3f} s/Img</span>",
box,
)
model_size = "1.6" if "1600M" in args.model_path else "0.6"
title = f"""
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/>
</div>
"""
DESCRIPTION = f"""
<p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p>
<p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p>
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p>
<p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space, </p>running on node {socket.gethostname()}.
<p style="font-size: 16px; font-weight: bold;">Unsafe word will give you a 'Red Heart' in the image instead.</p>
"""
if model_size == "0.6":
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>"
examples = [
'a cyberpunk cat with a neon sign that says "Sana"',
"A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a white oversized straight t-shirt, white shorts, and short white shoes.",
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
"portrait photo of a girl, photograph, highly detailed face, depth of field",
'make me a logo that says "So Fast" with a really cool flying dragon shape with lightning sparks all over the sides and all of it contains Indonesian language',
"๐ถ Wearing ๐ถ flying on the ๐",
"๐ง with ๐น in the โ๏ธ",
"an old rusted robot wearing pants and a jacket riding skis in a supermarket.",
"professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.",
"Astronaut in a jungle, cold color palette, muted colors, detailed",
"a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending nature with modern design with a plush earth-toned bed textured stone walls circular fireplace massive uniquely shaped window framing snow-capped mountains dense forests",
]
css = """
.gradio-container{max-width: 640px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css, title="Sana") as demo:
gr.Markdown(title)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
info_box = gr.Markdown(
value=f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: 16px; color:red; font-weight: bold;'>{read_inference_count()}</span>"
)
demo.load(fn=update_inference_count, outputs=info_box) # update the value when re-loading the page
# with gr.Row(equal_height=False):
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False, columns=NUM_IMAGES_PER_PROMPT, format="png")
speed_box = gr.Markdown(
value=f"<span style='font-size: 16px; font-weight: bold;'>Inference speed: {INFER_SPEED} s/Img</span>"
)
with gr.Accordion("Advanced options", open=False):
with gr.Group():
with gr.Row(visible=True):
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1080,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1920,
)
with gr.Row():
flow_dpms_inference_steps = gr.Slider(
label="Sampling steps",
minimum=5,
maximum=40,
step=1,
value=18,
)
flow_dpms_guidance_scale = gr.Slider(
label="CFG Guidance scale",
minimum=1,
maximum=10,
step=0.1,
value=5.0,
)
flow_dpms_pag_guidance_scale = gr.Slider(
label="PAG Guidance scale",
minimum=1,
maximum=4,
step=0.5,
value=2.0,
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
schedule = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=SCHEDULE_NAME,
value=DEFAULT_SCHEDULE_NAME,
label="Sampler Schedule",
visible=True,
)
num_imgs = gr.Slider(
label="Num Images",
minimum=1,
maximum=6,
step=1,
value=1,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
style_selection,
use_negative_prompt,
num_imgs,
seed,
height,
width,
flow_dpms_guidance_scale,
flow_dpms_pag_guidance_scale,
flow_dpms_inference_steps,
randomize_seed,
],
outputs=[result, seed, speed_box, info_box],
api_name="run",
)
if __name__ == "__main__":
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN'))
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=False, share=args.share)
|