from transformers import GPT2Tokenizer, GPT2LMHeadModel import gradio as gr model = GPT2LMHeadModel.from_pretrained("genaforvena/the_soft_delerizome_machine_a_thousand_guattaris_fourth_of_plateaus_once") tokenizer = GPT2Tokenizer.from_pretrained("genaforvena/the_soft_delerizome_machine_a_thousand_guattaris_fourth_of_plateaus_once") tokenizer.pad_token = tokenizer.eos_token def generate_text(prompt): """Generates text using the fine-tuned model.""" inputs = tokenizer(prompt, return_tensors="pt", padding=True) outputs = model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=150, num_return_sequences=1, do_sample=True, temperature=0.8, top_k=50, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") iface.launch()