gguf-my-repo / app.py
reach-vb's picture
reach-vb HF staff
Update app.py (#7)
08e5ef1 verified
raw
history blame
3.72 kB
import os
import shutil
import subprocess
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from textwrap import dedent
api = HfApi()
def process_model(model_id, q_method, hf_token):
MODEL_NAME = model_id.split('/')[-1]
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
username = whoami(hf_token)["name"]
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
print("Model downloaded successully!")
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
subprocess.run(fp16_conversion, shell=True)
print("Model converted to fp16 successully!")
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
subprocess.run(quantise_ggml, shell=True)
print("Quantised successfully!")
# Create empty repo
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF"
repo_url = create_repo(
repo_id = repo_id,
repo_type="model",
exist_ok=True,
token=hf_token
)
print("Empty repo created successfully!")
card = ModelCard.load(model_id)
card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
card.text = dedent(
f"""
# {upload_repo}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
## Use with llama.cpp
```bash
brew install ggerganov/ggerganov/llama.cpp
```
```bash
llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is "
```
"""
)
card.save(os.path.join(MODEL_NAME, "README-new.md"))
api.upload_file(
path_or_fileobj=qtype,
path_in_repo=qtype.split("/")[-1],
repo_id=repo_id,
repo_type="model",
)
api.upload_file(
path_or_fileobj=f"{MODEL_NAME}/README-new.md",
path_in_repo=README.md,
repo_id=repo_id,
repo_type="model",
)
print("Uploaded successfully!")
shutil.rmtree(MODEL_NAME)
print("Folder cleaned up successfully!")
return (
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
# Create Gradio interface
iface = gr.Interface(
fn=process_model,
inputs=[
gr.Textbox(
lines=1,
label="Hub Model ID",
info="Model repo ID"
),
gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantisation type"
),
gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token"
)
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants!",
description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.",
article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>",
)
# Launch the interface
iface.launch(debug=True)