Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import shutil | |
import subprocess | |
import gradio as gr | |
from huggingface_hub import create_repo, HfApi | |
from huggingface_hub import snapshot_download | |
from huggingface_hub import whoami | |
from huggingface_hub import ModelCard | |
from textwrap import dedent | |
api = HfApi() | |
def process_model(model_id, q_method, hf_token): | |
MODEL_NAME = model_id.split('/')[-1] | |
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin" | |
username = whoami(hf_token)["name"] | |
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False) | |
print("Model downloaded successully!") | |
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}" | |
subprocess.run(fp16_conversion, shell=True) | |
print("Model converted to fp16 successully!") | |
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf" | |
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" | |
subprocess.run(quantise_ggml, shell=True) | |
print("Quantised successfully!") | |
# Create empty repo | |
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF" | |
repo_url = create_repo( | |
repo_id = repo_id, | |
repo_type="model", | |
exist_ok=True, | |
token=hf_token | |
) | |
print("Empty repo created successfully!") | |
card = ModelCard.load(model_id) | |
card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"] | |
card.text = dedent( | |
f""" | |
# {repo_id} | |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp. | |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. | |
## Use with llama.cpp | |
```bash | |
brew install ggerganov/ggerganov/llama.cpp | |
``` | |
```bash | |
llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is " | |
``` | |
""" | |
) | |
card.save(os.path.join(MODEL_NAME, "README-new.md")) | |
api.upload_file( | |
path_or_fileobj=qtype, | |
path_in_repo=qtype.split("/")[-1], | |
repo_id=repo_id, | |
repo_type="model", | |
) | |
api.upload_file( | |
path_or_fileobj=f"{MODEL_NAME}/README-new.md", | |
path_in_repo=README.md, | |
repo_id=repo_id, | |
repo_type="model", | |
) | |
print("Uploaded successfully!") | |
shutil.rmtree(MODEL_NAME) | |
print("Folder cleaned up successfully!") | |
return ( | |
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>', | |
"llama.png", | |
) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
gr.Textbox( | |
lines=1, | |
label="Hub Model ID", | |
info="Model repo ID" | |
), | |
gr.Dropdown( | |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
label="Quantization Method", | |
info="GGML quantisation type" | |
), | |
gr.Textbox( | |
lines=1, | |
label="HF Write Token", | |
info="https://hf.co/settings/token" | |
) | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
gr.Image(show_label=False), | |
], | |
title="Create your own GGUF Quants!", | |
description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.", | |
article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>", | |
) | |
# Launch the interface | |
iface.launch(debug=True) |