File size: 9,318 Bytes
4c9a6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
from transformers import pipeline

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# Hugging Face 토큰 μ„€μ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable is not set")

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

torch.backends.cuda.matmul.allow_tf32 = True

# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
    os.makedirs(gallery_path, exist_ok=True)

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

# 인증된 λͺ¨λΈ λ‘œλ“œ
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16,
    use_auth_token=HF_TOKEN
)

# Hyper-SD LoRA λ‘œλ“œ
pipe.load_lora_weights(
    hf_hub_download(
        "ByteDance/Hyper-SD",
        "Hyper-FLUX.1-dev-8steps-lora.safetensors",
        use_auth_token=HF_TOKEN
    )
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

def save_image(image):
    """Save the generated image and return the path"""
    try:
        if not os.path.exists(gallery_path):
            try:
                os.makedirs(gallery_path, exist_ok=True)
            except Exception as e:
                print(f"Failed to create gallery directory: {str(e)}")
                return None
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_suffix = os.urandom(4).hex()
        filename = f"generated_{timestamp}_{random_suffix}.png"
        filepath = os.path.join(gallery_path, filename)
        
        try:
            if isinstance(image, Image.Image):
                image.save(filepath, "PNG", quality=100)
            else:
                image = Image.fromarray(image)
                image.save(filepath, "PNG", quality=100)
            
            return filepath
        except Exception as e:
            print(f"Failed to save image: {str(e)}")
            return None
            
    except Exception as e:
        print(f"Error in save_image: {str(e)}")
        return None

# μ˜ˆμ‹œ ν”„λ‘¬ν”„νŠΈ μ •μ˜
examples = [
    ["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
    ["A 3D Iron Man mask with glowing eyes and metallic red-gold finish"],
    ["A detailed 3D Pokemon Pikachu figure with glossy surface"],
    ["A 3D geometric abstract cube transforming into a sphere, metallic finish"],
    ["A 3D steampunk mechanical heart with brass and copper details"],
    ["A 3D crystal dragon with transparent iridescent scales"],
    ["A 3D futuristic hovering drone with neon light accents"],
    ["A 3D ancient Greek warrior helmet with ornate details"],
    ["A 3D robotic butterfly with mechanical wings and metallic finish"],
    ["A 3D floating magical crystal orb with internal energy swirls"]
]

@spaces.GPU
def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None):
    global pipe
    
    if seed is None:
        seed = torch.randint(0, 1000000, (1,)).item()
    
    # ν•œκΈ€ 감지 및 λ²ˆμ—­
    def contains_korean(text):
        return any(ord('κ°€') <= ord(c) <= ord('힣') for c in text)
    
    # ν”„λ‘¬ν”„νŠΈ μ „μ²˜λ¦¬
    if contains_korean(prompt):
        translated = translator(prompt)[0]['translation_text']
        prompt = translated
    
    formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
    
    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
        try:
            generated_image = pipe(
                prompt=[formatted_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
            
            saved_path = save_image(generated_image)
            if saved_path is None:
                print("Warning: Failed to save generated image")
            
            return generated_image
        except Exception as e:
            print(f"Error in image generation: {str(e)}")
            return None

def get_random_seed():
    return torch.randint(0, 1000000, (1,)).item()

    
def process_example(prompt):
    return process_and_save_image(
        height=1024,
        width=1024,
        steps=8,
        scales=3.5,
        prompt=prompt,
        seed=get_random_seed()
    )

    
# Gradio μΈν„°νŽ˜μ΄μŠ€
with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
        .container {
            background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a);
            border-radius: 20px;
            padding: 20px;
        }
        .generate-btn {
            background: linear-gradient(45deg, #2196F3, #00BCD4);
            border: none;
            color: white;
            font-weight: bold;
            border-radius: 10px;
        }
        .output-image {
            border-radius: 15px;
            box-shadow: 0 8px 16px rgba(0,0,0,0.2);
        }
        .fixed-width {
            max-width: 1024px;
            margin: auto;
        }
    """
) as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
            <h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator</h1>
            <p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI</p>
        </div>
        """
    )
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Image Description",
                placeholder="Describe the 3D image you want to create...",
                lines=3
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                seed = gr.Number(
                    label="Seed (random by default, set for reproducibility)",
                    value=get_random_seed(),
                    precision=0
                )
                
                randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
            
            generate_btn = gr.Button(
                "✨ Generate Image",
                elem_classes=["generate-btn"]
            )

        with gr.Column(scale=4, elem_classes=["fixed-width"]):
            output = gr.Image(
                label="Generated Image",
                elem_id="output-image",
                elem_classes=["output-image", "fixed-width"],
                value="3d.webp"
            )

    # Examples μ„Ήμ…˜
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=output,
        fn=process_example,  # μˆ˜μ •λœ ν•¨μˆ˜ μ‚¬μš©
        cache_examples=False,
        examples_per_page=5
    )

    def update_seed():
        return get_random_seed()

    # 이벀트 ν•Έλ“€λŸ¬
    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    ).then(
        update_seed,
        outputs=[seed]
    )

    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.launch(allowed_paths=[PERSISTENT_DIR])