File size: 13,454 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
f96a94d
 
 
 
 
 
9880f3d
7d475c1
db6a3b7
 
9880f3d
db6a3b7
 
9880f3d
db6a3b7
f96a94d
 
b070f28
 
dbbe8de
 
 
 
b070f28
dbbe8de
 
 
 
 
a135ad5
f96a94d
 
 
 
b209823
0ace4dc
 
23a34ba
bd46f72
f96a94d
 
 
 
 
 
 
 
 
 
 
52f4e8f
 
 
 
f96a94d
 
 
 
 
 
 
 
 
a7544c9
a898014
23a34ba
 
 
 
 
46cbcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9880f3d
599ec34
f96a94d
 
 
 
599ec34
f96a94d
 
 
 
52f4e8f
 
f96a94d
52f4e8f
f96a94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc03769
f96a94d
 
 
7d475c1
23a34ba
 
f96a94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599ec34
 
23a34ba
 
f96a94d
 
 
 
 
23a34ba
f96a94d
23a34ba
f96a94d
23a34ba
 
 
 
ee210e2
23a34ba
 
 
 
 
a898014
2e78ab8
db6a3b7
a135ad5
599ec34
 
f96a94d
 
599ec34
 
 
f96a94d
599ec34
 
521fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
03489b3
 
 
 
 
 
e39e82a
2552e0c
03489b3
e39e82a
03489b3
 
e39e82a
03489b3
 
e39e82a
03489b3
 
 
 
f96a94d
 
dbbe8de
f96a94d
e39e82a
 
03489b3
 
e39e82a
03489b3
 
2552e0c
03489b3
 
2552e0c
 
 
 
03489b3
 
 
e39e82a
03489b3
 
 
 
 
f96a94d
03489b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from transformers import pipeline
from typing import Tuple, Dict, Any  # Tuple import 추가

# CUDA 메모리 관리 설정
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True

# 환경 변수 설정
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'

# Hugging Face 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable is not set")

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'

torch.backends.cuda.matmul.allow_tf32 = True

# 번역기 초기화
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    trial_id = str(uuid.uuid4())
    processed_image = pipeline.preprocess_image(image)
    processed_image.save(f"{TMP_DIR}/{trial_id}.png")
    return trial_id, processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']


@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
    if randomize_seed:
        seed = np.random.randint(0, MAX_SEED)
    outputs = pipeline.run(
        Image.open(f"{TMP_DIR}/{trial_id}.png"),
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    trial_id = uuid.uuid4()
    video_path = f"{TMP_DIR}/{trial_id}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    return state, video_path


@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = f"{TMP_DIR}/{trial_id}.glb"
    glb.export(glb_path)
    return glb_path, glb_path


def activate_button() -> gr.Button:
    return gr.Button(interactive=True)


def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)

@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
    # 한글 감지 및 번역
    def contains_korean(text):
        return any(ord('가') <= ord(c) <= ord('힣') for c in text)
    
    # 프롬프트 전처리
    if contains_korean(prompt):
        translated = translator(prompt)[0]['translation_text']
        prompt = translated
    
    # 프롬프트 형식 강제
    formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
    
    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
        try:
            generated_image = pipe(
                prompt=[formatted_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
            
            trial_id = str(uuid.uuid4())
            generated_image.save(f"{TMP_DIR}/{trial_id}.png")
            return generated_image
            
        except Exception as e:
            print(f"Error in image generation: {str(e)}")
            return None

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""## Craft3D""")
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(
                label="Text Prompt",
                placeholder="Describe what you want to create...",
                lines=3
            )
            
            with gr.Accordion("Image Generation Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                seed = gr.Number(
                    label="Seed",
                    value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
                    precision=0
                )
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            
            generate_image_btn = gr.Button("Generate Image")
            
            image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
            
            with gr.Accordion("3D Generation Settings", open=False):
                ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
                ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
                slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
                slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)

            generate_3d_btn = gr.Button("Generate 3D")
            
            with gr.Accordion("GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
            
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()

    # Handlers
    generate_image_btn.click(
        text_to_image,
        inputs=[text_prompt, height, width, steps, scales, seed],
        outputs=[image_prompt]
    ).then(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt]
    )

# 나머지 핸들러들
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_3d_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        activate_button,
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        deactivate_button,
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        activate_button,
        outputs=[download_glb],
    )

    model_output.clear(
        deactivate_button,
        outputs=[download_glb],
    )

if __name__ == "__main__":
    # CUDA 사용 가능 여부 확인
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    try:
        # 3D 생성 파이프라인
        trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(  # pipeline을 trellis_pipeline으로 변경
            "JeffreyXiang/TRELLIS-image-large"
        )
        trellis_pipeline.to(device)
        
        # 이미지 생성 파이프라인
        flux_pipe = FluxPipeline.from_pretrained(  # pipe를 flux_pipe로 변경
            "black-forest-labs/FLUX.1-dev",
            torch_dtype=torch.bfloat16,
            device_map="balanced"
        )
        
        # Hyper-SD LoRA 로드
        lora_path = hf_hub_download(
            "ByteDance/Hyper-SD",
            "Hyper-FLUX.1-dev-8steps-lora.safetensors",
            use_auth_token=HF_TOKEN
        )
        flux_pipe.load_lora_weights(lora_path)
        flux_pipe.fuse_lora(lora_scale=0.125)
        
        # 번역기 초기화
        translator = transformers.pipeline(  # pipeline을 transformers.pipeline으로 변경
            "translation", 
            model="Helsinki-NLP/opus-mt-ko-en",
            device=device
        )
        
        # CUDA 메모리 초기화
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        # 초기 이미지 전처리 테스트
        try:
            test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
            trellis_pipeline.preprocess_image(test_image)
        except Exception as e:
            print(f"Warning: Initial preprocessing test failed: {e}")
            
        # Gradio 인터페이스 실행
        demo.launch(allowed_paths=[PERSISTENT_DIR])
        
    except Exception as e:
        print(f"Error during initialization: {e}")
        raise