Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import time | |
from os import path | |
import shutil | |
from datetime import datetime | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import torch | |
import numpy as np | |
import imageio | |
import uuid | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from diffusers import FluxPipeline | |
from transformers import pipeline | |
from typing import Tuple, Dict, Any # Tuple import ์ถ๊ฐ | |
# Hugging Face ํ ํฐ ์ค์ | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN environment variable is not set") | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = "/tmp/Trellis-demo" | |
os.makedirs(TMP_DIR, exist_ok=True) | |
# Setup and initialization code | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
os.environ['SPCONV_ALGO'] = 'native' | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
trial_id = str(uuid.uuid4()) | |
processed_image = pipeline.preprocess_image(image) | |
processed_image.save(f"{TMP_DIR}/{trial_id}.png") | |
return trial_id, processed_image | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]: | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
outputs = pipeline.run( | |
Image.open(f"{TMP_DIR}/{trial_id}.png"), | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
trial_id = uuid.uuid4() | |
video_path = f"{TMP_DIR}/{trial_id}.mp4" | |
os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) | |
return state, video_path | |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
gs, mesh, trial_id = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
glb.export(glb_path) | |
return glb_path, glb_path | |
def activate_button() -> gr.Button: | |
return gr.Button(interactive=True) | |
def deactivate_button() -> gr.Button: | |
return gr.Button(interactive=False) | |
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image: | |
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ | |
def contains_korean(text): | |
return any(ord('๊ฐ') <= ord(c) <= ord('ํฃ') for c in text) | |
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ | |
if contains_korean(prompt): | |
translated = translator(prompt)[0]['translation_text'] | |
prompt = translated | |
# ํ๋กฌํํธ ํ์ ๊ฐ์ | |
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background" | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): | |
try: | |
generated_image = pipe( | |
prompt=[formatted_prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
trial_id = str(uuid.uuid4()) | |
generated_image.save(f"{TMP_DIR}/{trial_id}.png") | |
return generated_image | |
except Exception as e: | |
print(f"Error in image generation: {str(e)}") | |
return None | |
# Gradio Interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("""## Craft3D""") | |
with gr.Row(): | |
with gr.Column(): | |
text_prompt = gr.Textbox( | |
label="Text Prompt", | |
placeholder="Describe what you want to create...", | |
lines=3 | |
) | |
with gr.Accordion("Image Generation Settings", open=False): | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8 | |
) | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5 | |
) | |
seed = gr.Number( | |
label="Seed", | |
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(), | |
precision=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
generate_image_btn = gr.Button("Generate Image") | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) | |
with gr.Accordion("3D Generation Settings", open=False): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1) | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1) | |
generate_3d_btn = gr.Button("Generate 3D") | |
with gr.Accordion("GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
trial_id = gr.Textbox(visible=False) | |
output_buf = gr.State() | |
# Handlers | |
generate_image_btn.click( | |
text_to_image, | |
inputs=[text_prompt, height, width, steps, scales, seed], | |
outputs=[image_prompt] | |
).then( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[trial_id, image_prompt] | |
) | |
# ๋๋จธ์ง ํธ๋ค๋ฌ๋ค | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[trial_id, image_prompt], | |
) | |
image_prompt.clear( | |
lambda: '', | |
outputs=[trial_id], | |
) | |
generate_3d_btn.click( | |
image_to_3d, | |
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
).then( | |
activate_button, | |
outputs=[extract_glb_btn], | |
) | |
video_output.clear( | |
deactivate_button, | |
outputs=[extract_glb_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
activate_button, | |
outputs=[download_glb], | |
) | |
model_output.clear( | |
deactivate_button, | |
outputs=[download_glb], | |
) | |
if __name__ == "__main__": | |
# CUDA ์ฌ์ฉ ๊ฐ๋ฅ ์ฌ๋ถ ํ์ธ | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
try: | |
# 3D ์์ฑ ํ์ดํ๋ผ์ธ | |
pipeline = TrellisImageTo3DPipeline.from_pretrained( | |
"JeffreyXiang/TRELLIS-image-large", | |
token=HF_TOKEN # use_auth_token ๋์ token ์ฌ์ฉ | |
) | |
pipeline.to(device) | |
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16, | |
token=HF_TOKEN, # use_auth_token ๋์ token ์ฌ์ฉ | |
device_map="auto" | |
) | |
# Hyper-SD LoRA ๋ก๋ | |
lora_path = hf_hub_download( | |
"ByteDance/Hyper-SD", | |
"Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
token=HF_TOKEN # use_auth_token ๋์ token ์ฌ์ฉ | |
) | |
pipe.load_lora_weights(lora_path) | |
pipe.fuse_lora(lora_scale=0.125) | |
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ | |
translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
# ์ด๊ธฐ ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ ํ ์คํธ | |
try: | |
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)) | |
pipeline.preprocess_image(test_image) | |
except Exception as e: | |
print(f"Warning: Initial preprocessing test failed: {e}") | |
# Gradio ์ธํฐํ์ด์ค ์คํ | |
demo.launch(allowed_paths=[PERSISTENT_DIR]) | |
except Exception as e: | |
print(f"Error during initialization: {e}") | |
raise |