SORA-3D / app.py
aiqtech's picture
Update app.py
a135ad5 verified
raw
history blame
13 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
os.environ['SPCONV_ALGO'] = 'native'
os.environ['WARP_USE_CPU'] = '1' # Warp๋ฅผ CPU ๋ชจ๋“œ๋กœ ๊ฐ•์ œ
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
def initialize_models():
global pipeline, translator, flux_pipe
try:
# Trellis ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™” (CPU ๋ชจ๋“œ๋กœ)
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
# ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™” (CPU ๋ชจ๋“œ๋กœ)
translator = translation_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=-1
)
# Flux ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™” (CPU ๋ชจ๋“œ๋กœ)
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float32
)
print("Models initialized successfully")
return True
except Exception as e:
print(f"Model initialization error: {str(e)}")
return False
def translate_if_korean(text):
if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
@spaces.GPU
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
try:
trial_id = str(uuid.uuid4())
# ์ด๋ฏธ์ง€๊ฐ€ ๋„ˆ๋ฌด ์ž‘์€ ๊ฒฝ์šฐ ํฌ๊ธฐ ์กฐ์ •
min_size = 64
if image.size[0] < min_size or image.size[1] < min_size:
ratio = min_size / min(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
return None, None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
# GPU ์„ค์ •
if torch.cuda.is_available():
pipeline.to("cuda")
pipeline.to(torch.float16)
with torch.no_grad():
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
}
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
# CPU ๋ชจ๋“œ๋กœ ๋Œ์•„๊ฐ€๊ธฐ
pipeline.to("cpu")
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
pipeline.to("cpu")
raise e
@spaces.GPU
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
try:
# GPU ์„ค์ •
if torch.cuda.is_available():
flux_pipe.to("cuda")
flux_pipe.to(torch.float16)
# ๊ธฐ๋ณธ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ถ”๊ฐ€
base_prompt = "wbgmsst, 3D, white background"
# ์‚ฌ์šฉ์ž ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋ฒˆ์—ญ (ํ•œ๊ตญ์–ด์ธ ๊ฒฝ์šฐ)
translated_prompt = translate_if_korean(prompt)
# ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ ์กฐํ•ฉ
final_prompt = f"{translated_prompt}, {base_prompt}"
with torch.inference_mode():
image = flux_pipe(
prompt=[final_prompt],
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_steps
).images[0]
# CPU ๋ชจ๋“œ๋กœ ๋Œ์•„๊ฐ€๊ธฐ
flux_pipe.to("cpu")
return image
except Exception as e:
print(f"Error in generate_image_from_text: {str(e)}")
flux_pipe.to("cpu")
raise e
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
css = """
footer {
visibility: hidden;
}
"""
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ •์˜
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
# Craft3D : 3D Asset Creation & Text-to-Image Generation
""")
with gr.Tabs():
with gr.TabItem("Image to 3D"):
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter your image description...",
lines=3
)
with gr.Row():
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
generate_txt2img_btn = gr.Button("Generate Image")
with gr.Column():
txt2img_output = gr.Image(label="Generated Image")
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=64,
)
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
concurrency_limit=1
).then(
activate_button,
outputs=[extract_glb_btn]
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
concurrency_limit=1
).then(
activate_button,
outputs=[download_glb]
)
generate_txt2img_btn.click(
generate_image_from_text,
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
outputs=[txt2img_output],
concurrency_limit=1
)
if __name__ == "__main__":
# ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
if not initialize_models():
print("Failed to initialize models")
exit(1)
try:
# rembg ์‚ฌ์ „ ๋กœ๋“œ ์‹œ๋„
test_image = Image.fromarray(np.ones((256, 256, 3), dtype=np.uint8) * 255)
pipeline.preprocess_image(test_image)
except Exception as e:
print(f"Warning: Failed to preload rembg: {str(e)}")
# Gradio ์•ฑ ์‹คํ–‰
demo.queue(max_size=20).launch(
share=True,
max_threads=4,
show_error=True
)