Spaces:
Paused
Paused
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import torch | |
import numpy as np | |
import imageio | |
import uuid | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from transformers import pipeline as translation_pipeline | |
from diffusers import FluxPipeline | |
from typing import * | |
# ํ๊ฒฝ ๋ณ์ ์ค์ | |
os.environ['SPCONV_ALGO'] = 'native' | |
os.environ['WARP_USE_CPU'] = '1' # Warp๋ฅผ CPU ๋ชจ๋๋ก ๊ฐ์ | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = "/tmp/Trellis-demo" | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def initialize_models(): | |
global pipeline, translator, flux_pipe | |
try: | |
# Trellis ํ์ดํ๋ผ์ธ ์ด๊ธฐํ (CPU ๋ชจ๋๋ก) | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ (CPU ๋ชจ๋๋ก) | |
translator = translation_pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=-1 | |
) | |
# Flux ํ์ดํ๋ผ์ธ ์ด๊ธฐํ (CPU ๋ชจ๋๋ก) | |
flux_pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.float32 | |
) | |
print("Models initialized successfully") | |
return True | |
except Exception as e: | |
print(f"Model initialization error: {str(e)}") | |
return False | |
def translate_if_korean(text): | |
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text): | |
translated = translator(text)[0]['translation_text'] | |
return translated | |
return text | |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
try: | |
trial_id = str(uuid.uuid4()) | |
# ์ด๋ฏธ์ง๊ฐ ๋๋ฌด ์์ ๊ฒฝ์ฐ ํฌ๊ธฐ ์กฐ์ | |
min_size = 64 | |
if image.size[0] < min_size or image.size[1] < min_size: | |
ratio = min_size / min(image.size) | |
new_size = tuple(int(dim * ratio) for dim in image.size) | |
image = image.resize(new_size, Image.LANCZOS) | |
processed_image = pipeline.preprocess_image(image) | |
processed_image.save(f"{TMP_DIR}/{trial_id}.png") | |
return trial_id, processed_image | |
except Exception as e: | |
print(f"Error in preprocess_image: {str(e)}") | |
return None, None | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, | |
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int): | |
try: | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png") | |
# GPU ์ค์ | |
if torch.cuda.is_available(): | |
pipeline.to("cuda") | |
pipeline.to(torch.float16) | |
with torch.no_grad(): | |
outputs = pipeline.run( | |
input_image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
} | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
trial_id = str(uuid.uuid4()) | |
video_path = f"{TMP_DIR}/{trial_id}.mp4" | |
os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) | |
# CPU ๋ชจ๋๋ก ๋์๊ฐ๊ธฐ | |
pipeline.to("cpu") | |
return state, video_path | |
except Exception as e: | |
print(f"Error in image_to_3d: {str(e)}") | |
pipeline.to("cpu") | |
raise e | |
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps): | |
try: | |
# GPU ์ค์ | |
if torch.cuda.is_available(): | |
flux_pipe.to("cuda") | |
flux_pipe.to(torch.float16) | |
# ๊ธฐ๋ณธ ํ๋กฌํํธ๋ฅผ ์ถ๊ฐ | |
base_prompt = "wbgmsst, 3D, white background" | |
# ์ฌ์ฉ์ ํ๋กฌํํธ๋ฅผ ๋ฒ์ญ (ํ๊ตญ์ด์ธ ๊ฒฝ์ฐ) | |
translated_prompt = translate_if_korean(prompt) | |
# ์ต์ข ํ๋กฌํํธ ์กฐํฉ | |
final_prompt = f"{translated_prompt}, {base_prompt}" | |
with torch.inference_mode(): | |
image = flux_pipe( | |
prompt=[final_prompt], | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_steps | |
).images[0] | |
# CPU ๋ชจ๋๋ก ๋์๊ฐ๊ธฐ | |
flux_pipe.to("cpu") | |
return image | |
except Exception as e: | |
print(f"Error in generate_image_from_text: {str(e)}") | |
flux_pipe.to("cpu") | |
raise e | |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
gs, mesh, trial_id = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
glb.export(glb_path) | |
return glb_path, glb_path | |
def activate_button() -> gr.Button: | |
return gr.Button(interactive=True) | |
def deactivate_button() -> gr.Button: | |
return gr.Button(interactive=False) | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
# Gradio ์ธํฐํ์ด์ค ์ ์ | |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: | |
gr.Markdown(""" | |
# Craft3D : 3D Asset Creation & Text-to-Image Generation | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Image to 3D"): | |
with gr.Row(): | |
with gr.Column(): | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
generate_btn = gr.Button("Generate") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
with gr.TabItem("Text to Image"): | |
with gr.Row(): | |
with gr.Column(): | |
text_prompt = gr.Textbox( | |
label="Text Prompt", | |
placeholder="Enter your image description...", | |
lines=3 | |
) | |
with gr.Row(): | |
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height") | |
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width") | |
with gr.Row(): | |
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale") | |
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps") | |
generate_txt2img_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
txt2img_output = gr.Image(label="Generated Image") | |
trial_id = gr.Textbox(visible=False) | |
output_buf = gr.State() | |
# Example images | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=preprocess_image, | |
outputs=[trial_id, image_prompt], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
# Handlers | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[trial_id, image_prompt], | |
) | |
image_prompt.clear( | |
lambda: '', | |
outputs=[trial_id], | |
) | |
generate_btn.click( | |
image_to_3d, | |
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
concurrency_limit=1 | |
).then( | |
activate_button, | |
outputs=[extract_glb_btn] | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
concurrency_limit=1 | |
).then( | |
activate_button, | |
outputs=[download_glb] | |
) | |
generate_txt2img_btn.click( | |
generate_image_from_text, | |
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps], | |
outputs=[txt2img_output], | |
concurrency_limit=1 | |
) | |
if __name__ == "__main__": | |
# ๋ชจ๋ธ ์ด๊ธฐํ | |
if not initialize_models(): | |
print("Failed to initialize models") | |
exit(1) | |
try: | |
# rembg ์ฌ์ ๋ก๋ ์๋ | |
test_image = Image.fromarray(np.ones((256, 256, 3), dtype=np.uint8) * 255) | |
pipeline.preprocess_image(test_image) | |
except Exception as e: | |
print(f"Warning: Failed to preload rembg: {str(e)}") | |
# Gradio ์ฑ ์คํ | |
demo.queue(max_size=20).launch( | |
share=True, | |
max_threads=4, | |
show_error=True | |
) |