Spaces:
Running
on
L40S
Running
on
L40S
JeffreyXiang
commited on
Commit
·
db894f7
1
Parent(s):
690b53e
fix gradio image compression
Browse files- app.py +15 -12
- trellis/pipelines/trellis_image_to_3d.py +3 -1
app.py
CHANGED
@@ -19,7 +19,7 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
21 |
|
22 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
23 |
"""
|
24 |
Preprocess the input image.
|
25 |
|
@@ -27,9 +27,11 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
27 |
image (Image.Image): The input image.
|
28 |
|
29 |
Returns:
|
|
|
30 |
Image.Image: The preprocessed image.
|
31 |
"""
|
32 |
-
|
|
|
33 |
|
34 |
|
35 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
|
@@ -74,12 +76,12 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
74 |
|
75 |
|
76 |
@spaces.GPU
|
77 |
-
def image_to_3d(image:
|
78 |
"""
|
79 |
Convert an image to a 3D model.
|
80 |
|
81 |
Args:
|
82 |
-
image (
|
83 |
seed (int): The random seed.
|
84 |
randomize_seed (bool): Whether to randomize the seed.
|
85 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
@@ -93,9 +95,9 @@ def image_to_3d(image: Image.Image, seed: int, randomize_seed: bool, ss_guidance
|
|
93 |
"""
|
94 |
if randomize_seed:
|
95 |
seed = np.random.randint(0, MAX_SEED)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
formats=["gaussian", "mesh"],
|
100 |
preprocess_image=False,
|
101 |
sparse_structure_sampler_params={
|
@@ -181,6 +183,9 @@ with gr.Blocks() as demo:
|
|
181 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
182 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
183 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
|
|
|
|
|
|
184 |
|
185 |
# Example images at the bottom of the page
|
186 |
with gr.Row():
|
@@ -191,23 +196,21 @@ with gr.Blocks() as demo:
|
|
191 |
],
|
192 |
inputs=[image_prompt],
|
193 |
fn=lambda image: preprocess_image(image),
|
194 |
-
outputs=[image_prompt],
|
195 |
run_on_click=True,
|
196 |
examples_per_page=64,
|
197 |
)
|
198 |
|
199 |
-
model = gr.State()
|
200 |
-
|
201 |
# Handlers
|
202 |
image_prompt.upload(
|
203 |
preprocess_image,
|
204 |
inputs=[image_prompt],
|
205 |
-
outputs=[image_prompt],
|
206 |
)
|
207 |
|
208 |
generate_btn.click(
|
209 |
image_to_3d,
|
210 |
-
inputs=[
|
211 |
outputs=[model, video_output],
|
212 |
).then(
|
213 |
activate_button,
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
21 |
|
22 |
+
def preprocess_image(image: Image.Image) -> Tuple[np.array, Image.Image]:
|
23 |
"""
|
24 |
Preprocess the input image.
|
25 |
|
|
|
27 |
image (Image.Image): The input image.
|
28 |
|
29 |
Returns:
|
30 |
+
np.array: The preprocessed image.
|
31 |
Image.Image: The preprocessed image.
|
32 |
"""
|
33 |
+
processed_image = pipeline.preprocess_image(image)
|
34 |
+
return np.array(processed_image), processed_image
|
35 |
|
36 |
|
37 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
|
|
|
76 |
|
77 |
|
78 |
@spaces.GPU
|
79 |
+
def image_to_3d(image: np.array, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
80 |
"""
|
81 |
Convert an image to a 3D model.
|
82 |
|
83 |
Args:
|
84 |
+
image (np.array): The input image.
|
85 |
seed (int): The random seed.
|
86 |
randomize_seed (bool): Whether to randomize the seed.
|
87 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
|
95 |
"""
|
96 |
if randomize_seed:
|
97 |
seed = np.random.randint(0, MAX_SEED)
|
98 |
+
outputs = pipeline.run(
|
99 |
+
Image.fromarray(image),
|
100 |
+
seed=seed,
|
101 |
formats=["gaussian", "mesh"],
|
102 |
preprocess_image=False,
|
103 |
sparse_structure_sampler_params={
|
|
|
183 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
184 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
185 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
186 |
+
|
187 |
+
image = gr.State()
|
188 |
+
model = gr.State()
|
189 |
|
190 |
# Example images at the bottom of the page
|
191 |
with gr.Row():
|
|
|
196 |
],
|
197 |
inputs=[image_prompt],
|
198 |
fn=lambda image: preprocess_image(image),
|
199 |
+
outputs=[image, image_prompt],
|
200 |
run_on_click=True,
|
201 |
examples_per_page=64,
|
202 |
)
|
203 |
|
|
|
|
|
204 |
# Handlers
|
205 |
image_prompt.upload(
|
206 |
preprocess_image,
|
207 |
inputs=[image_prompt],
|
208 |
+
outputs=[image, image_prompt],
|
209 |
)
|
210 |
|
211 |
generate_btn.click(
|
212 |
image_to_3d,
|
213 |
+
inputs=[image, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
214 |
outputs=[model, video_output],
|
215 |
).then(
|
216 |
activate_button,
|
trellis/pipelines/trellis_image_to_3d.py
CHANGED
@@ -254,10 +254,11 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
254 |
return slat
|
255 |
|
256 |
@torch.no_grad()
|
257 |
-
def
|
258 |
self,
|
259 |
image: Image.Image,
|
260 |
num_samples: int = 1,
|
|
|
261 |
sparse_structure_sampler_params: dict = {},
|
262 |
slat_sampler_params: dict = {},
|
263 |
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
|
@@ -276,6 +277,7 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
276 |
if preprocess_image:
|
277 |
image = self.preprocess_image(image)
|
278 |
cond = self.get_cond([image])
|
|
|
279 |
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
280 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
281 |
return self.decode_slat(slat, formats)
|
|
|
254 |
return slat
|
255 |
|
256 |
@torch.no_grad()
|
257 |
+
def run(
|
258 |
self,
|
259 |
image: Image.Image,
|
260 |
num_samples: int = 1,
|
261 |
+
seed: int = 42,
|
262 |
sparse_structure_sampler_params: dict = {},
|
263 |
slat_sampler_params: dict = {},
|
264 |
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
|
|
|
277 |
if preprocess_image:
|
278 |
image = self.preprocess_image(image)
|
279 |
cond = self.get_cond([image])
|
280 |
+
torch.manual_seed(seed)
|
281 |
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
282 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
283 |
return self.decode_slat(slat, formats)
|