import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)

def initialize_models():
    global pipeline, translator, flux_pipe
    
    # Hugging Face 토큰 확인
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise ValueError("HF_TOKEN environment variable is not set. Please set your Hugging Face token.")
    
    # Trellis 파이프라인 초기화
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    
    # 번역기 초기화
    translator = translation_pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
    
    # Flux 파이프라인 초기화 - token 추가
    flux_pipe = FluxPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev", 
        torch_dtype=torch.bfloat16,
        use_auth_token=hf_token  # Hugging Face 토큰 적용
    )
    flux_pipe.load_lora_weights(
        "gokaygokay/Flux-Game-Assets-LoRA-v2",
        use_auth_token=hf_token  # LoRA 가중치 로드시에도 토큰 적용
    )
    flux_pipe.fuse_lora(lora_scale=1.0)
    flux_pipe.to(device="cuda", dtype=torch.bfloat16)

def translate_if_korean(text):
    if any(ord('가') <= ord(char) <= ord('힣') for char in text):
        translated = translator(text)[0]['translation_text']
        return translated
    return text

def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    trial_id = str(uuid.uuid4())
    processed_image = pipeline.preprocess_image(image)
    processed_image.save(f"{TMP_DIR}/{trial_id}.png")
    return trial_id, processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }


def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']

@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
    if randomize_seed:
        seed = np.random.randint(0, MAX_SEED)
    outputs = pipeline.run(
        Image.open(f"{TMP_DIR}/{trial_id}.png"),
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    trial_id = uuid.uuid4()
    video_path = f"{TMP_DIR}/{trial_id}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    return state, video_path

@spaces.GPU
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
    # 기본 프롬프트를 추가
    base_prompt = "wbgmsst, 3D, white background"
    
    # 사용자 프롬프트를 번역 (한국어인 경우)
    translated_prompt = translate_if_korean(prompt)
    
    # 최종 프롬프트 조합
    final_prompt = f"{translated_prompt}, {base_prompt}"
    
    with torch.inference_mode():
        image = flux_pipe(
            prompt=[final_prompt],
            height=height,
            width=width,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps
        ).images[0]
        
        return image

@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = f"{TMP_DIR}/{trial_id}.glb"
    glb.export(glb_path)
    return glb_path, glb_path

def activate_button() -> gr.Button:
    return gr.Button(interactive=True)

def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)


with gr.Blocks() as demo:
    gr.Markdown("""
    # 3D Asset Creation & Text-to-Image Generation
    """)
    
    with gr.Tabs():
        with gr.TabItem("Image to 3D"):
            with gr.Row():
                with gr.Column():
                    image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
                    
                    with gr.Accordion(label="Generation Settings", open=False):
                        seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                        gr.Markdown("Stage 1: Sparse Structure Generation")
                        with gr.Row():
                            ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                            ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                        gr.Markdown("Stage 2: Structured Latent Generation")
                        with gr.Row():
                            slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                            slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

                    generate_btn = gr.Button("Generate")
                    
                    with gr.Accordion(label="GLB Extraction Settings", open=False):
                        mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                        texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
                    
                    extract_glb_btn = gr.Button("Extract GLB", interactive=False)

                with gr.Column():
                    video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
                    model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
                    download_glb = gr.DownloadButton(label="Download GLB", interactive=False)

        with gr.TabItem("Text to Image"):
            with gr.Row():
                with gr.Column():
                    text_prompt = gr.Textbox(
                        label="Text Prompt",
                        placeholder="Enter your image description...",
                        lines=3
                    )
                    
                    with gr.Row():
                        txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
                        txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
                    
                    with gr.Row():
                        guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
                        num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
                    
                    generate_txt2img_btn = gr.Button("Generate Image")
                
                with gr.Column():
                    txt2img_output = gr.Image(label="Generated Image")
    
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()

    # Example images
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[trial_id, image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )

# Handlers
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        activate_button,
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        deactivate_button,
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        activate_button,
        outputs=[download_glb],
    )

    model_output.clear(
        deactivate_button,
        outputs=[download_glb],
    )

    # Text to Image 핸들러
    generate_txt2img_btn.click(
        generate_image_from_text,
        inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
        outputs=[txt2img_output]
    )

# Launch the Gradio app
if __name__ == "__main__":
    initialize_models()  # 모든 모델 초기화
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch()