Spaces:
Running
Running
import os | |
import yaml | |
import torch | |
import sys | |
sys.path.append(os.path.abspath('./')) | |
from inference.utils import * | |
from train import WurstCoreB | |
from gdf import DDPMSampler | |
from train import WurstCore_t2i as WurstCoreC | |
import numpy as np | |
import random | |
import argparse | |
import gradio as gr | |
import spaces | |
from huggingface_hub import hf_hub_url | |
import subprocess | |
from huggingface_hub import hf_hub_download | |
from transformers import pipeline | |
# Initialize the translation pipeline | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--height', type=int, default=2560, help='image height') | |
parser.add_argument('--width', type=int, default=5120, help='image width') | |
parser.add_argument('--seed', type=int, default=123, help='random seed') | |
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32') | |
parser.add_argument('--config_c', type=str, | |
default='configs/training/t2i.yaml', help='config file for stage c, latent generation') | |
parser.add_argument('--config_b', type=str, | |
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding') | |
parser.add_argument('--prompt', type=str, | |
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt') | |
parser.add_argument('--num_image', type=int, default=1, help='how many images generated') | |
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image') | |
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory') | |
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel') | |
args = parser.parse_args() | |
return args | |
def clear_image(): | |
return None | |
def load_message(height, width, seed, prompt, args, stage_a_tiled): | |
args.height = height | |
args.width = width | |
args.seed = seed | |
args.prompt = prompt + ' rich detail, 4k, high quality' | |
args.stage_a_tiled = stage_a_tiled | |
return args | |
def is_korean(text): | |
return any('\uac00' <= char <= '\ud7a3' for char in text) | |
def translate_if_korean(text): | |
if is_korean(text): | |
translated = translator(text, max_length=512)[0]['translation_text'] | |
print(f"Translated from Korean: {text} -> {translated}") | |
return translated | |
return text | |
@spaces.GPU(duration=120) | |
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled): | |
global args | |
# Translate the prompt if it's in Korean | |
prompt = translate_if_korean(prompt) | |
args = load_message(height, width, seed, prompt, args, stage_a_tiled) | |
torch.manual_seed(args.seed) | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float | |
captions = [args.prompt] * args.num_image | |
height, width = args.height, args.width | |
batch_size = 1 | |
height_lr, width_lr = get_target_lr_size(height / width, std_size=32) | |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size) | |
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size) | |
# Stage C Parameters | |
extras.sampling_configs['cfg'] = 4 | |
extras.sampling_configs['shift'] = 1 | |
extras.sampling_configs['timesteps'] = 20 | |
extras.sampling_configs['t_start'] = 1.0 | |
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf) | |
# Stage B Parameters | |
extras_b.sampling_configs['cfg'] = 1.1 | |
extras_b.sampling_configs['shift'] = 1 | |
extras_b.sampling_configs['timesteps'] = 10 | |
extras_b.sampling_configs['t_start'] = 1.0 | |
for _, caption in enumerate(captions): | |
batch = {'captions': [caption] * batch_size} | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
with torch.no_grad(): | |
models.generator.cuda() | |
print('STAGE C GENERATION***************************') | |
with torch.cuda.amp.autocast(dtype=dtype): | |
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device) | |
models.generator.cpu() | |
torch.cuda.empty_cache() | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
conditions_b['effnet'] = sampled_c | |
unconditions_b['effnet'] = torch.zeros_like(sampled_c) | |
print('STAGE B + A DECODING***************************') | |
with torch.cuda.amp.autocast(dtype=dtype): | |
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled) | |
torch.cuda.empty_cache() | |
imgs = show_images(sampled) | |
return imgs[0] | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("<h1><center>์ด๊ณ ํด์๋ UHD ์ด๋ฏธ์ง(์ต๋ 5120 X 4096 ํฝ์ ) ์์ฑ</center></h1>") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Text Prompt (ํ๊ธ ๋๋ ์์ด๋ก ์ ๋ ฅํ์ธ์)", | |
show_label=False, | |
max_lines=1, | |
placeholder="ํ๋กฌํํธ๋ฅผ ์ ๋ ฅํ์ธ์ (Enter your prompt in Korean or English)", | |
container=False | |
) | |
polish_button = gr.Button("์ ์ถ! (Submit!)", scale=0) | |
output_img = gr.Image(label="Output Image", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Number( | |
label="Random Seed", | |
value=123, | |
step=1, | |
minimum=0, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=1536, | |
maximum=5120, | |
step=32, | |
value=4096 | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=1536, | |
maximum=4096, | |
step=32, | |
value=2304 | |
) | |
with gr.Row(): | |
cfg = gr.Slider( | |
label="CFG", | |
minimum=3, | |
maximum=10, | |
step=0.1, | |
value=4 | |
) | |
timesteps = gr.Slider( | |
label="Timesteps", | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=20 | |
) | |
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False) | |
clear_button = gr.Button("Clear!") | |
gr.Examples( | |
examples=[ | |
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.", | |
"๋ ๋ฎ์ธ ์ฐ๋งฅ์ ์ฅ์ํ ์ ๊ฒฝ, ํธ๋ฅธ ํ๋์ ๋ฐฐ๊ฒฝ์ผ๋ก ํ ๊ณ ์ํ ํธ์๊ฐ ์๋ ๋ชจ์ต", | |
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.", | |
"์ค์จํฐ๋ฅผ ์ ์ ์ ์ด", | |
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.", | |
"๊ณจ๋ ๋ฆฌํธ๋ฆฌ๋ฒ ๊ฐ์์ง๊ฐ ํธ๋ฅธ ์๋๋ฐญ์์ ๋นจ๊ฐ ๊ณต์ ์ซ๋ ๊ท์ฌ์ด ๋ชจ์ต", | |
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.", | |
"์บ๋๋ค ๋ฐดํ ๊ตญ๋ฆฝ๊ณต์์ ์๋ฆ๋ค์ด ํ๊ฒฝ, ์ฒญ๋ก์ ํธ์์ ๋ ๋ฎ์ธ ์ฐ๋ค, ์ธ์ฐฝํ ์๋๋ฌด ์ฒ์ด ์ด์ฐ๋ฌ์ง ๋ชจ์ต", | |
"๊ท์ฌ์ด ์์ธ๊ฐ ์์กฐ์์ ๋ชฉ์ํ๋ ๋ชจ์ต, ๊ฑฐํ์ ๋๋ฌ์ธ์ธ ์ฑ ์ด์ง ์ ์ ๋ชจ์ต์ผ๋ก ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๊ณ ์์", | |
], | |
inputs=[prompt], | |
outputs=[output_img], | |
examples_per_page=5 | |
) | |
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img) | |
polish_button.click(clear_image, inputs=[], outputs=output_img) | |
def download_with_wget(url, save_path): | |
try: | |
subprocess.run(['wget', url, '-O', save_path], check=True) | |
print(f"Downloaded to {save_path}") | |
except subprocess.CalledProcessError as e: | |
print(f"Error downloading file: {e}") | |
def download_model(): | |
urls = [ | |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors', | |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors', | |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors', | |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors', | |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors', | |
] | |
for file_url in urls: | |
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models') | |
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models') | |
if __name__ == "__main__": | |
args = parse_args() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
download_model() | |
config_file = args.config_c | |
with open(config_file, "r", encoding="utf-8") as file: | |
loaded_config = yaml.safe_load(file) | |
core = WurstCoreC(config_dict=loaded_config, device=device, training=False) | |
# SETUP STAGE B | |
config_file_b = args.config_b | |
with open(config_file_b, "r", encoding="utf-8") as file: | |
config_file_b = yaml.safe_load(file) | |
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False) | |
extras = core.setup_extras_pre() | |
models = core.setup_models(extras) | |
models.generator.eval().requires_grad_(False) | |
print("STAGE C READY") | |
extras_b = core_b.setup_extras_pre() | |
models_b = core_b.setup_models(extras_b, skip_clip=True) | |
models_b = WurstCoreB.Models( | |
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model} | |
) | |
models_b.generator.bfloat16().eval().requires_grad_(False) | |
print("STAGE B READY") | |
pretrained_path = args.pretrained_path | |
sdd = torch.load(pretrained_path, map_location='cpu') | |
collect_sd = {} | |
for k, v in sdd.items(): | |
collect_sd[k[7:]] = v | |
models.train_norm.load_state_dict(collect_sd) | |
models.generator.eval() | |
models.train_norm.eval() | |
demo.launch(debug=True, share=True, auth=("gini","pick")) |