Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient, HfApi | |
import os | |
import requests | |
from typing import List, Dict, Union, Tuple | |
import traceback | |
from PIL import Image | |
from io import BytesIO | |
import asyncio | |
from gradio_client import Client | |
import time | |
import threading | |
import json | |
import re | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN) | |
hf_api = HfApi(token=HF_TOKEN) | |
def get_headers(): | |
if not HF_TOKEN: | |
raise ValueError("Hugging Face token not found in environment variables") | |
return {"Authorization": f"Bearer {HF_TOKEN}"} | |
def get_file_content(space_id: str, file_path: str) -> str: | |
file_url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}" | |
try: | |
response = requests.get(file_url, headers=get_headers()) | |
if response.status_code == 200: | |
return response.text | |
else: | |
return f"File not found or inaccessible: {file_path}" | |
except requests.RequestException: | |
return f"Error fetching content for file: {file_path}" | |
def get_space_structure(space_id: str) -> Dict: | |
try: | |
files = hf_api.list_repo_files(repo_id=space_id, repo_type="space") | |
tree = {"type": "directory", "path": "", "name": space_id, "children": []} | |
for file in files: | |
path_parts = file.split('/') | |
current = tree | |
for i, part in enumerate(path_parts): | |
if i == len(path_parts) - 1: # ํ์ผ | |
current["children"].append({"type": "file", "path": file, "name": part}) | |
else: # ๋๋ ํ ๋ฆฌ | |
found = False | |
for child in current["children"]: | |
if child["type"] == "directory" and child["name"] == part: | |
current = child | |
found = True | |
break | |
if not found: | |
new_dir = {"type": "directory", "path": '/'.join(path_parts[:i+1]), "name": part, "children": []} | |
current["children"].append(new_dir) | |
current = new_dir | |
return tree | |
except Exception as e: | |
print(f"Error in get_space_structure: {str(e)}") | |
return {"error": f"API request error: {str(e)}"} | |
def format_tree_structure(tree_data: Dict, indent: str = "") -> str: | |
if "error" in tree_data: | |
return tree_data["error"] | |
formatted = f"{indent}{'๐' if tree_data.get('type') == 'directory' else '๐'} {tree_data.get('name', 'Unknown')}\n" | |
if tree_data.get("type") == "directory": | |
for child in sorted(tree_data.get("children", []), key=lambda x: (x.get("type", "") != "directory", x.get("name", ""))): | |
formatted += format_tree_structure(child, indent + " ") | |
return formatted | |
def summarize_code(app_content: str): | |
system_message = "๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ๊ณ ์์ฝํ๋ AI ์กฐ์์ ๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ 3์ค ์ด๋ด๋ก ๊ฐ๊ฒฐํ๊ฒ ์์ฝํด์ฃผ์ธ์." | |
user_message = f"๋ค์ Python ์ฝ๋๋ฅผ 3์ค ์ด๋ด๋ก ์์ฝํด์ฃผ์ธ์:\n\n{app_content}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
response = hf_client.chat_completion(messages, max_tokens=200, temperature=0.7) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"์์ฝ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
def analyze_code(app_content: str): | |
system_message = """๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ๋ AI ์กฐ์์ ๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ ๋ถ์ํ์ฌ ๋ค์ ํญ๋ชฉ์ ๋ํด ์ค๋ช ํด์ฃผ์ธ์: | |
A. ๋ฐฐ๊ฒฝ ๋ฐ ํ์์ฑ | |
B. ๊ธฐ๋ฅ์ ํจ์ฉ์ฑ ๋ฐ ๊ฐ์น | |
C. ํน์ฅ์ | |
D. ์ ์ฉ ๋์ ๋ฐ ํ๊ฒ | |
E. ๊ธฐ๋ํจ๊ณผ | |
๊ธฐ์กด ๋ฐ ์ ์ฌ ํ๋ก์ ํธ์ ๋น๊ตํ์ฌ ๋ถ์ํด์ฃผ์ธ์. Markdown ํ์์ผ๋ก ์ถ๋ ฅํ์ธ์.""" | |
user_message = f"๋ค์ Python ์ฝ๋๋ฅผ ๋ถ์ํด์ฃผ์ธ์:\n\n{app_content}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
response = hf_client.chat_completion(messages, max_tokens=1000, temperature=0.7) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"๋ถ์ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
def explain_usage(app_content: str): | |
system_message = "๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ์ฌ ์ฌ์ฉ๋ฒ์ ์ค๋ช ํ๋ AI ์กฐ์์ ๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ ๋ฐํ์ผ๋ก ๋ง์น ํ๋ฉด์ ๋ณด๋ ๊ฒ์ฒ๋ผ ์ฌ์ฉ๋ฒ์ ์์ธํ ์ค๋ช ํด์ฃผ์ธ์. Markdown ํ์์ผ๋ก ์ถ๋ ฅํ์ธ์." | |
user_message = f"๋ค์ Python ์ฝ๋์ ์ฌ์ฉ๋ฒ์ ์ค๋ช ํด์ฃผ์ธ์:\n\n{app_content}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
response = hf_client.chat_completion(messages, max_tokens=800, temperature=0.7) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"์ฌ์ฉ๋ฒ ์ค๋ช ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
def adjust_lines_for_code(code_content: str, min_lines: int = 10, max_lines: int = 100) -> int: | |
""" | |
์ฝ๋ ๋ด์ฉ์ ๋ฐ๋ผ lines ์๋ฅผ ๋์ ์ผ๋ก ์กฐ์ ํฉ๋๋ค. | |
Parameters: | |
- code_content (str): ์ฝ๋ ํ ์คํธ ๋ด์ฉ | |
- min_lines (int): ์ต์ lines ์ | |
- max_lines (int): ์ต๋ lines ์ | |
Returns: | |
- int: ์ค์ ๋ lines ์ | |
""" | |
# ์ฝ๋์ ์ค ์ ๊ณ์ฐ | |
num_lines = len(code_content.split('\n')) | |
# ์ค ์๊ฐ min_lines๋ณด๋ค ์ ๋ค๋ฉด min_lines ์ฌ์ฉ, max_lines๋ณด๋ค ํฌ๋ฉด max_lines ์ฌ์ฉ | |
return min(max(num_lines, min_lines), max_lines) | |
def analyze_space(url: str, progress=gr.Progress()): | |
try: | |
space_id = url.split('spaces/')[-1] | |
# Space ID ์ ํจ์ฑ ๊ฒ์ฌ ์์ | |
if not re.match(r'^[\w.-]+/[\w.-]+$', space_id): | |
raise ValueError(f"Invalid Space ID format: {space_id}") | |
progress(0.1, desc="ํ์ผ ๊ตฌ์กฐ ๋ถ์ ์ค...") | |
tree_structure = get_space_structure(space_id) | |
if "error" in tree_structure: | |
raise ValueError(tree_structure["error"]) | |
tree_view = format_tree_structure(tree_structure) | |
progress(0.3, desc="app.py ๋ด์ฉ ๊ฐ์ ธ์ค๋ ์ค...") | |
app_content = get_file_content(space_id, "app.py") | |
progress(0.5, desc="์ฝ๋ ์์ฝ ์ค...") | |
summary = summarize_code(app_content) | |
progress(0.7, desc="์ฝ๋ ๋ถ์ ์ค...") | |
analysis = analyze_code(app_content) | |
progress(0.9, desc="์ฌ์ฉ๋ฒ ์ค๋ช ์์ฑ ์ค...") | |
usage = explain_usage(app_content) | |
# ์ค ์ ๊ณ์ฐํ์ฌ lines ์ค์ | |
app_py_lines = adjust_lines_for_code(app_content) | |
progress(1.0, desc="์๋ฃ") | |
return app_content, tree_view, tree_structure, space_id, summary, analysis, usage, app_py_lines | |
except Exception as e: | |
print(f"Error in analyze_space: {str(e)}") | |
print(traceback.format_exc()) | |
return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", "", None, "", "", "", "", 10 | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str = "", | |
max_tokens: int = 1024, | |
temperature: float = 0.7, | |
top_p: float = 0.9, | |
): | |
system_prefix = """๋น์ ์ ํ๊น ํ์ด์ค์ ํนํ๋ AI ์ฝ๋ฉ ์ ๋ฌธ๊ฐ์ ๋๋ค. ์ฌ์ฉ์์ ์ง๋ฌธ์ ์น์ ํ๊ณ ์์ธํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์. | |
Gradio ํน์ฑ์ ์ ํํ ์ธ์ํ๊ณ Requirements.txt ๋๋ฝ์์ด ์ฝ๋ฉ๊ณผ ์ค๋ฅ๋ฅผ ํด๊ฒฐํด์ผ ํฉ๋๋ค. | |
ํญ์ ์ ํํ๊ณ ์ ์ฉํ ์ ๋ณด๋ฅผ ์ ๊ณตํ๋๋ก ๋ ธ๋ ฅํ์ธ์.""" | |
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in hf_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.get('content', None) | |
if token: | |
response += token.strip("") | |
yield response | |
def create_ui(): | |
try: | |
css = """ | |
footer {visibility: hidden;} | |
.output-group { | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
margin-bottom: 20px; | |
} | |
.scroll-lock { | |
overflow-y: auto !important; | |
max-height: calc((100vh - 200px) / 5) !important; | |
} | |
.tree-view-scroll { | |
overflow-y: auto !important; | |
max-height: calc((100vh - 200px) / 2) !important; | |
} | |
.full-height { | |
height: calc(200em * 1.2) !important; | |
overflow-y: auto !important; | |
} | |
.code-box { | |
overflow-x: auto !important; | |
overflow-y: auto !important; | |
white-space: pre !important; | |
word-wrap: normal !important; | |
height: 100% !important; | |
} | |
.code-box > div { | |
min-width: 100% !important; | |
} | |
.code-box > div > textarea { | |
word-break: normal !important; | |
overflow-wrap: normal !important; | |
} | |
.tab-nav { | |
background-color: #2c3e50; | |
border-radius: 5px 5px 0 0; | |
overflow: hidden; | |
} | |
.tab-nav button { | |
color: #ecf0f1 !important; | |
background-color: #34495e; | |
border: none; | |
padding: 10px 20px; | |
margin: 0; | |
transition: background-color 0.3s; | |
font-size: 16px; | |
font-weight: bold; | |
} | |
.tab-nav button:hover { | |
background-color: #2980b9; | |
} | |
.tab-nav button.selected { | |
color: #2c3e50 !important; | |
background-color: #ecf0f1; | |
} | |
input[type="text"], textarea { | |
color: #2c3e50 !important; | |
background-color: #ecf0f1 !important; | |
} | |
""" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
gr.Markdown("# Mouse: HuggingFace") | |
with gr.Tabs() as tabs: | |
with gr.TabItem("๋ถ์"): | |
with gr.Row(): | |
with gr.Column(scale=6): # ์ผ์ชฝ 60% | |
url_input = gr.Textbox(label="HuggingFace Space URL") | |
analyze_button = gr.Button("๋ถ์") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
summary_output = gr.Markdown(label="์์ฝ (3์ค ์ด๋ด)") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
analysis_output = gr.Markdown(label="๋ถ์") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
usage_output = gr.Markdown(label="์ฌ์ฉ๋ฒ") | |
with gr.Group(elem_classes="output-group tree-view-scroll"): # ํธ๋ฆฌ ๋ทฐ ์คํฌ๋กค ์ถ๊ฐ | |
tree_view_output = gr.Textbox(label="ํ์ผ ๊ตฌ์กฐ (Tree View)", lines=30) | |
with gr.Column(scale=4): # ์ค๋ฅธ์ชฝ 40% | |
with gr.Group(elem_classes="output-group full-height"): | |
code_tabs = gr.Tabs() | |
with code_tabs: | |
app_py_tab = gr.TabItem("app.py") | |
with app_py_tab: | |
app_py_content = gr.Code( | |
language="python", | |
label="app.py", | |
lines=200, | |
elem_classes="full-height code-box" | |
) | |
requirements_tab = gr.TabItem("requirements.txt") | |
with requirements_tab: | |
requirements_content = gr.Textbox( | |
label="requirements.txt", | |
lines=200, | |
elem_classes="full-height code-box" | |
) | |
with gr.TabItem("AI ์ฝ๋ฉ"): | |
chatbot = gr.Chatbot(label="๋ํ") | |
msg = gr.Textbox(label="๋ฉ์์ง") | |
# ์จ๊ฒจ์ง ์ํ๋ก ํ๋ผ๋ฏธํฐ ์ค์ | |
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens", visible=False) | |
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature", visible=False) | |
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P", visible=False) | |
examples = [ | |
["์์ธํ ์ฌ์ฉ ๋ฐฉ๋ฒ์ ๋ง์น ํ๋ฉด์ ๋ณด๋ฉด์ ์ค๋ช ํ๋ฏ์ด 4000 ํ ํฐ ์ด์ ์์ธํ ์ค๋ช ํ๋ผ"], | |
["FAQ 20๊ฑด์ ์์ธํ๊ฒ ์์ฑํ๋ผ. 4000ํ ํฐ ์ด์ ์ฌ์ฉํ๋ผ."], | |
["์ฌ์ฉ ๋ฐฉ๋ฒ๊ณผ ์ฐจ๋ณ์ , ํน์ง, ๊ฐ์ ์ ์ค์ฌ์ผ๋ก 4000 ํ ํฐ ์ด์ ์ ํ๋ธ ์์ ์คํฌ๋ฆฝํธ ํํ๋ก ์์ฑํ๋ผ"], | |
["๋ณธ ์๋น์ค๋ฅผ SEO ์ต์ ํํ์ฌ ๋ธ๋ก๊ทธ ํฌ์คํธ(๋ฐฐ๊ฒฝ ๋ฐ ํ์์ฑ, ๊ธฐ์กด ์ ์ฌ ์๋น์ค์ ๋น๊ตํ์ฌ ํน์ฅ์ , ํ์ฉ์ฒ, ๊ฐ์น, ๊ธฐ๋ํจ๊ณผ, ๊ฒฐ๋ก ์ ํฌํจ)๋ก 4000 ํ ํฐ ์ด์ ์์ฑํ๋ผ"], | |
["ํนํ ์ถ์์ ํ์ฉํ ๊ธฐ์ ๋ฐ ๋น์ฆ๋์ค๋ชจ๋ธ ์ธก๋ฉด์ ํฌํจํ์ฌ ํนํ ์ถ์์ ๊ตฌ์ฑ์ ๋ง๊ฒ ํ์ ์ ์ธ ์ฐฝ์ ๋ฐ๋ช ๋ด์ฉ์ ์ค์ฌ์ผ๋ก 4000ํ ํฐ ์ด์ ์์ฑํ๋ผ."], | |
["๊ณ์ ์ด์ด์ ๋ต๋ณํ๋ผ"], | |
] | |
gr.Examples(examples, inputs=msg) | |
def respond_wrapper(message, chat_history, max_tokens, temperature, top_p): | |
bot_message = "" | |
for response in respond(message, chat_history, max_tokens=max_tokens, temperature=temperature, top_p=top_p): | |
bot_message = response # ๋ง์ง๋ง ์๋ต์ ์ ์ฅ | |
yield "", chat_history + [(message, bot_message)] | |
chat_history.append((message, bot_message)) | |
return "", chat_history | |
msg.submit(respond_wrapper, [msg, chatbot, max_tokens, temperature, top_p], [msg, chatbot]) | |
space_id_state = gr.State() | |
tree_structure_state = gr.State() | |
app_py_content_lines = gr.State() | |
analyze_button.click( | |
analyze_space, | |
inputs=[url_input], | |
outputs=[app_py_content, tree_view_output, tree_structure_state, space_id_state, summary_output, analysis_output, usage_output, app_py_content_lines] | |
).then( | |
lambda space_id: get_file_content(space_id, "requirements.txt"), | |
inputs=[space_id_state], | |
outputs=[requirements_content] | |
) | |
# lines ์๋ฅผ ๋์ ์ผ๋ก ์ค์ | |
app_py_content.change(lambda lines: gr.update(lines=lines), inputs=[app_py_content_lines], outputs=[app_py_content]) | |
return demo | |
except Exception as e: | |
print(f"Error in create_ui: {str(e)}") | |
print(traceback.format_exc()) | |
raise | |
if __name__ == "__main__": | |
try: | |
print("Starting HuggingFace Space Analyzer...") | |
demo = create_ui() | |
print("UI created successfully.") | |
print("Configuring Gradio queue...") | |
demo.queue() | |
print("Gradio queue configured.") | |
print("Launching Gradio app...") | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
debug=True, | |
show_api=False | |
) | |
print("Gradio app launched successfully.") | |
except Exception as e: | |
print(f"Error in main: {str(e)}") | |
print("Detailed error information:") | |
print(traceback.format_exc()) | |
raise |