Spaces:
Running
Running
File size: 11,631 Bytes
ab60fd6 4ed3667 ab60fd6 2f277ef ab60fd6 cb3f086 03cc438 ab60fd6 cb3f086 75a89e6 cb3f086 75a89e6 a701020 cb3f086 a701020 75a89e6 a701020 cb3f086 a701020 7ef0257 a701020 cb3f086 a701020 7ef0257 a701020 ab60fd6 7ef0257 ab60fd6 1b4aded e5df187 7ef0257 ab60fd6 7ef0257 ab60fd6 1b4aded ab60fd6 e5df187 7ef0257 ab60fd6 1b4aded e5df187 7ef0257 e5df187 7ef0257 ab60fd6 7ef0257 ab60fd6 7ef0257 ab60fd6 1b4aded ab60fd6 1b4aded e5df187 7ef0257 e5df187 7ef0257 e5df187 7ef0257 ab60fd6 1b4aded f65d1c7 ab60fd6 7ef0257 ab60fd6 0e7b5e0 7ef0257 0e7b5e0 7ef0257 ab60fd6 7ef0257 0e7b5e0 ab60fd6 7ef0257 0e7b5e0 7ef0257 0e7b5e0 ab60fd6 0ddc68a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import os
from groq import Groq
from dataclasses import dataclass
import tempfile
import base64
import io
class GroqLLM:
"""Compatible LLM interface for smolagents CodeAgent"""
def __init__(self, model_name="llama-3.1-8B-Instant"):
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
self.model_name = model_name
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
"""Make the class callable as required by smolagents"""
try:
# Handle different prompt formats
if isinstance(prompt, (dict, list)):
prompt_str = str(prompt)
else:
prompt_str = str(prompt)
# Create a properly formatted message
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{
"role": "user",
"content": prompt_str
}],
temperature=0.7,
max_tokens=1024,
stream=False
)
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
return error_msg
class DataAnalysisAgent(CodeAgent):
"""Extended CodeAgent with dataset awareness"""
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
super().__init__(*args, **kwargs)
self._dataset = dataset
@property
def dataset(self) -> pd.DataFrame:
"""Access the stored dataset"""
return self._dataset
def run(self, prompt: str) -> str:
"""Override run method to include dataset context"""
dataset_info = f"""
Dataset Shape: {self.dataset.shape}
Columns: {', '.join(self.dataset.columns)}
Data Types: {self.dataset.dtypes.to_dict()}
"""
enhanced_prompt = f"""
Analyze the following dataset:
{dataset_info}
Task: {prompt}
Use the provided tools to analyze this specific dataset and return detailed results.
"""
return super().run(enhanced_prompt)
@tool
def analyze_basic_stats(data: pd.DataFrame) -> str:
"""Calculate basic statistical measures for numerical columns in the dataset.
This function computes fundamental statistical metrics including mean, median,
standard deviation, skewness, and counts of missing values for all numerical
columns in the provided DataFrame.
Args:
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
should contain at least one numerical column for meaningful analysis.
Returns:
str: A string containing formatted basic statistics for each numerical column,
including mean, median, standard deviation, skewness, and missing value counts.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
stats = {}
numeric_cols = data.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
stats[col] = {
'mean': float(data[col].mean()),
'median': float(data[col].median()),
'std': float(data[col].std()),
'skew': float(data[col].skew()),
'missing': int(data[col].isnull().sum())
}
return str(stats)
@tool
def generate_correlation_matrix(data: pd.DataFrame) -> str:
"""Generate a visual correlation matrix for numerical columns in the dataset.
This function creates a heatmap visualization showing the correlations between
all numerical columns in the dataset. The correlation values are displayed
using a color-coded matrix for easy interpretation.
Args:
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
should contain at least two numerical columns for correlation analysis.
Returns:
str: A base64 encoded string representing the correlation matrix plot image,
which can be displayed in a web interface or saved as an image file.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
numeric_data = data.select_dtypes(include=[np.number])
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
@tool
def analyze_categorical_columns(data: pd.DataFrame) -> str:
"""Analyze categorical columns in the dataset for distribution and frequencies.
This function examines categorical columns to identify unique values, top categories,
and missing value counts, providing insights into the categorical data distribution.
Args:
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
should contain at least one categorical column for meaningful analysis.
Returns:
str: A string containing formatted analysis results for each categorical column,
including unique value counts, top categories, and missing value counts.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
analysis = {}
for col in categorical_cols:
analysis[col] = {
'unique_values': int(data[col].nunique()),
'top_categories': data[col].value_counts().head(5).to_dict(),
'missing': int(data[col].isnull().sum())
}
return str(analysis)
@tool
def suggest_features(data: pd.DataFrame) -> str:
"""Suggest potential feature engineering steps based on data characteristics.
This function analyzes the dataset's structure and statistical properties to
recommend possible feature engineering steps that could improve model performance.
Args:
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
can contain both numerical and categorical columns.
Returns:
str: A string containing suggestions for feature engineering based on
the characteristics of the input data.
"""
# Access dataset from agent if no data provided
if data is None:
data = tool.agent.dataset
suggestions = []
numeric_cols = data.select_dtypes(include=[np.number]).columns
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
if len(numeric_cols) >= 2:
suggestions.append("Consider creating interaction terms between numerical features")
if len(categorical_cols) > 0:
suggestions.append("Consider one-hot encoding for categorical variables")
for col in numeric_cols:
if data[col].skew() > 1 or data[col].skew() < -1:
suggestions.append(f"Consider log transformation for {col} due to skewness")
return '\n'.join(suggestions)
def main():
st.title("Data Analysis Assistant")
st.write("Upload your dataset and get automated analysis with natural language interaction.")
# Initialize session state
if 'data' not in st.session_state:
st.session_state['data'] = None
if 'agent' not in st.session_state:
st.session_state['agent'] = None
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
try:
if uploaded_file is not None:
with st.spinner('Loading and processing your data...'):
# Load the dataset
data = pd.read_csv(uploaded_file)
st.session_state['data'] = data
# Initialize the agent with the dataset
st.session_state['agent'] = DataAnalysisAgent(
dataset=data,
tools=[analyze_basic_stats, generate_correlation_matrix,
analyze_categorical_columns, suggest_features],
model=GroqLLM(),
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
)
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
st.subheader("Data Preview")
st.dataframe(data.head())
if st.session_state['data'] is not None:
analysis_type = st.selectbox(
"Choose analysis type",
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
"Feature Engineering", "Custom Question"]
)
if analysis_type == "Basic Statistics":
with st.spinner('Analyzing basic statistics...'):
result = st.session_state['agent'].run(
"Use the analyze_basic_stats tool to analyze this dataset and "
"provide insights about the numerical distributions."
)
st.write(result)
elif analysis_type == "Correlation Analysis":
with st.spinner('Generating correlation matrix...'):
result = st.session_state['agent'].run(
"Use the generate_correlation_matrix tool to analyze correlations "
"and explain any strong relationships found."
)
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
else:
st.write(result)
elif analysis_type == "Categorical Analysis":
with st.spinner('Analyzing categorical columns...'):
result = st.session_state['agent'].run(
"Use the analyze_categorical_columns tool to examine the "
"categorical variables and explain the distributions."
)
st.write(result)
elif analysis_type == "Feature Engineering":
with st.spinner('Generating feature suggestions...'):
result = st.session_state['agent'].run(
"Use the suggest_features tool to recommend potential "
"feature engineering steps for this dataset."
)
st.write(result)
elif analysis_type == "Custom Question":
question = st.text_input("What would you like to know about your data?")
if question:
with st.spinner('Analyzing...'):
result = st.session_state['agent'].run(question)
st.write(result)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main() |