|
import gradio as gr |
|
import spaces |
|
import random |
|
|
|
import torch |
|
from diffusers import FluxPipeline |
|
from huggingface_hub.utils import RepositoryNotFoundError |
|
|
|
pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda") |
|
|
|
@spaces.GPU(duration=70) |
|
def generate(prompt, negative_prompt, width, height, sample_steps, lora_id): |
|
try: |
|
pipeline.load_lora_weights(lora_id) |
|
except RepositoryNotFoundError: |
|
raise ValueError(f"Recieved invalid FLUX LoRA.") |
|
|
|
return pipeline(prompt=f"{prompt}\n(NOT {negative_prompt}:2)", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(random.randint(42, 69)), guidance_scale=7).images[0] |
|
|
|
with gr.Blocks() as interface: |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True) |
|
negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True) |
|
with gr.Column(): |
|
generate_button = gr.Button("Generate") |
|
output = gr.Image() |
|
with gr.Row(): |
|
with gr.Accordion(label="Advanced Settings", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True) |
|
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True) |
|
with gr.Column(): |
|
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True) |
|
lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw") |
|
|
|
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output]) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |