import gradio as gr from datasets import load_dataset import random import math from datasets import load_dataset import gradio as gr import os mydataset_private = load_dataset("glitchbench/GlitchBench")["validation"] dataset_size = len(mydataset_private) GRID_SIZE = (4, 1) def get_item_data(image_index): item = mydataset_private[image_index] return item def show_random_samples(): total = GRID_SIZE[0] * GRID_SIZE[1] random_indexes = random.sample(range(dataset_size), total) all_examples = [get_item_data(index) for index in random_indexes] all_inputs_left_right = [] for example_idx, example in enumerate(all_examples): all_inputs_left_right.append(example["image"]) all_inputs_left_right.append(example["source"]) all_inputs_left_right.append(example["glitch-type"]) all_inputs_left_right.append(example["reddit"]) all_inputs_left_right.append("Secrect") return all_inputs_left_right def make_grid(grid_size): list_of_components = [] with gr.Row(): for row_counter in range(grid_size[0]): with gr.Column(): for col_counter in range(grid_size[1]): item_image = gr.Image() with gr.Accordion("Click for details", open=False): item_glitch_source = gr.Textbox(label="Glitch Source") item_reddit = gr.Textbox(label="Glitch Type") item_id = gr.Textbox(label="Reddit ID") item_description = gr.Textbox(label="Description") list_of_components.append(item_image) list_of_components.append(item_glitch_source) list_of_components.append(item_reddit) list_of_components.append(item_id) list_of_components.append(item_description) return list_of_components with gr.Blocks(title="GltichBench") as browser: gr.Markdown("## GlitchBench dataset explorer") with gr.Column(): random_btn = gr.Button("Random Sample") with gr.Row(): grid = make_grid(GRID_SIZE) random_btn.click(show_random_samples, inputs=[], outputs=[*grid]) browser.launch()