Spaces:
Running
on
A10G
Running
on
A10G
runs without errors
Browse files- .gitignore +1 -0
- app.py +81 -79
- elephent.jpg +0 -0
- src/config.py +2 -1
- src/editor.py +6 -6
- src/sdxl_inversion_pipeline.py +4 -1
.gitignore
CHANGED
@@ -6,3 +6,4 @@
|
|
6 |
*.iml
|
7 |
out
|
8 |
gen
|
|
|
|
6 |
*.iml
|
7 |
out
|
8 |
gen
|
9 |
+
*.pyc
|
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
|
7 |
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
|
@@ -11,15 +9,13 @@ from src.editor import ImageEditorDemo
|
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
-
|
15 |
scheduler_class = MyEulerAncestralDiscreteScheduler
|
16 |
|
17 |
-
|
18 |
pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
|
19 |
pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
|
20 |
-
pipe_inference.scheduler
|
21 |
-
pipe_inversion.scheduler
|
22 |
-
pipe_inversion.scheduler_inference
|
23 |
|
24 |
|
25 |
# if torch.cuda.is_available():
|
@@ -32,104 +28,110 @@ pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference
|
|
32 |
# pipe = pipe.to(device)
|
33 |
|
34 |
|
35 |
-
def infer(input_image, description_prompt, target_prompt,
|
|
|
|
|
36 |
config = RunConfig(num_inference_steps=num_inference_steps,
|
37 |
num_inversion_steps=num_inversion_steps,
|
38 |
-
|
39 |
inversion_max_step=inversion_max_step)
|
40 |
-
|
41 |
-
editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config)
|
42 |
|
43 |
image = editor.edit(target_prompt)
|
44 |
return image
|
45 |
|
|
|
46 |
examples = [
|
47 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
48 |
"An astronaut riding a green horse",
|
49 |
"A delicious ceviche cheesecake slice",
|
50 |
]
|
51 |
|
52 |
-
css="""
|
53 |
-
#col-container {
|
54 |
-
|
55 |
-
|
56 |
-
}
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
if torch.cuda.is_available():
|
60 |
power_device = "GPU"
|
61 |
else:
|
62 |
power_device = "CPU"
|
63 |
|
64 |
-
with gr.Blocks(css=css) as demo:
|
65 |
-
|
66 |
gr.Markdown(f"""
|
67 |
-
|
|
|
|
|
|
|
68 |
""")
|
69 |
-
with gr.
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
with gr.Row():
|
75 |
-
|
76 |
-
description_prompt = gr.Text(
|
77 |
-
label="Image description",
|
78 |
-
show_label=False,
|
79 |
-
max_lines=1,
|
80 |
-
placeholder="Enter your image description",
|
81 |
-
container=False,
|
82 |
-
)
|
83 |
-
|
84 |
-
|
85 |
-
with gr.Row():
|
86 |
-
|
87 |
-
target_prompt = gr.Text(
|
88 |
-
label="Edit prompt",
|
89 |
-
show_label=False,
|
90 |
-
max_lines=1,
|
91 |
-
placeholder="Enter your edit prompt",
|
92 |
-
container=False,
|
93 |
-
)
|
94 |
-
|
95 |
-
|
96 |
-
with gr.Accordion("Advanced Settings", open=False):
|
97 |
-
|
98 |
with gr.Row():
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
value=1.2,
|
106 |
)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
114 |
)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
|
129 |
run_button.click(
|
130 |
-
fn
|
131 |
-
inputs
|
132 |
-
|
|
|
133 |
)
|
134 |
|
135 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
|
|
|
|
|
3 |
import torch
|
4 |
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
|
5 |
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
|
|
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
|
|
12 |
scheduler_class = MyEulerAncestralDiscreteScheduler
|
13 |
|
|
|
14 |
pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
|
15 |
pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
|
16 |
+
pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config)
|
17 |
+
pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config)
|
18 |
+
pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config)
|
19 |
|
20 |
|
21 |
# if torch.cuda.is_available():
|
|
|
28 |
# pipe = pipe.to(device)
|
29 |
|
30 |
|
31 |
+
def infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4,
|
32 |
+
num_inversion_steps=4,
|
33 |
+
inversion_max_step=0.6):
|
34 |
config = RunConfig(num_inference_steps=num_inference_steps,
|
35 |
num_inversion_steps=num_inversion_steps,
|
36 |
+
edit_guidance_scale=edit_guidance_scale,
|
37 |
inversion_max_step=inversion_max_step)
|
38 |
+
|
39 |
+
editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config, device)
|
40 |
|
41 |
image = editor.edit(target_prompt)
|
42 |
return image
|
43 |
|
44 |
+
|
45 |
examples = [
|
46 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
47 |
"An astronaut riding a green horse",
|
48 |
"A delicious ceviche cheesecake slice",
|
49 |
]
|
50 |
|
51 |
+
# css = """
|
52 |
+
# #col-container-1 {
|
53 |
+
# margin: 0 auto;
|
54 |
+
# max-width: 520px;
|
55 |
+
# }
|
56 |
+
# #col-container-2 {
|
57 |
+
# margin: 0 auto;
|
58 |
+
# max-width: 520px;
|
59 |
+
# }
|
60 |
+
# """
|
61 |
|
62 |
if torch.cuda.is_available():
|
63 |
power_device = "GPU"
|
64 |
else:
|
65 |
power_device = "CPU"
|
66 |
|
67 |
+
# with gr.Blocks(css=css) as demo:
|
68 |
+
with gr.Blocks() as demo:
|
69 |
gr.Markdown(f"""
|
70 |
+
This is a demo for our [paper]("https://arxiv.org/abs/2312.12540") **RNRI: Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models**.
|
71 |
+
Image editing using our RNRI for inversion demonstrates significant speed-up and improved quality compared to previous state-of-the-art methods.
|
72 |
+
RNRI can be applied to a variety of diffusion models, including SDXL, DDIM, and others.
|
73 |
+
Take a look at our [project page]("https://barakmam.github.io/rnri.github.io/").
|
74 |
""")
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column(elem_id="col-container-1"):
|
77 |
+
with gr.Row():
|
78 |
+
input_image = gr.Image(label="Input image", sources=['upload', 'webcam', 'clipboard'], type="pil")
|
79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
with gr.Row():
|
81 |
+
description_prompt = gr.Text(
|
82 |
+
label="Image description",
|
83 |
+
show_label=False,
|
84 |
+
max_lines=1,
|
85 |
+
placeholder="Enter your image description",
|
86 |
+
container=False,
|
|
|
87 |
)
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
target_prompt = gr.Text(
|
91 |
+
label="Edit prompt",
|
92 |
+
show_label=False,
|
93 |
+
max_lines=1,
|
94 |
+
placeholder="Enter your edit prompt",
|
95 |
+
container=False,
|
96 |
)
|
97 |
|
98 |
+
with gr.Accordion("Advanced Settings", open=False):
|
99 |
+
with gr.Row():
|
100 |
+
edit_guidance_scale = gr.Slider(
|
101 |
+
label="Guidance scale",
|
102 |
+
minimum=0.0,
|
103 |
+
maximum=10.0,
|
104 |
+
step=0.1,
|
105 |
+
value=1.2,
|
106 |
+
)
|
107 |
+
|
108 |
+
num_inference_steps = gr.Slider(
|
109 |
+
label="Number of RNRI iterations",
|
110 |
+
minimum=1,
|
111 |
+
maximum=12,
|
112 |
+
step=1,
|
113 |
+
value=4,
|
114 |
+
)
|
115 |
|
116 |
+
with gr.Row():
|
117 |
+
run_button = gr.Button("Edit", scale=1)
|
118 |
+
|
119 |
+
with gr.Column(elem_id="col-container-2"):
|
120 |
+
result = gr.Image(label="Result")
|
121 |
+
|
122 |
+
# gr.Examples(
|
123 |
+
# examples = examples,
|
124 |
+
# inputs = [prompt]
|
125 |
+
# )
|
126 |
|
127 |
run_button.click(
|
128 |
+
fn=infer,
|
129 |
+
inputs=[input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps,
|
130 |
+
num_inference_steps],
|
131 |
+
outputs=[result]
|
132 |
)
|
133 |
|
134 |
+
demo.queue().launch()
|
135 |
+
|
136 |
+
# im = infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4, num_inversion_steps=4,
|
137 |
+
# inversion_max_step=0.6)
|
elephent.jpg
ADDED
![]() |
src/config.py
CHANGED
@@ -9,7 +9,8 @@ class RunConfig:
|
|
9 |
|
10 |
num_inversion_steps: int = 100
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
inversion_max_step: float = 1.0
|
15 |
|
|
|
9 |
|
10 |
num_inversion_steps: int = 100
|
11 |
|
12 |
+
inversion_guidance_scale: float = 0.0
|
13 |
+
edit_guidance_scale: float = 1.2
|
14 |
|
15 |
inversion_max_step: float = 1.0
|
16 |
|
src/editor.py
CHANGED
@@ -35,7 +35,7 @@ def load_im_into_format_from_path(im_path):
|
|
35 |
|
36 |
|
37 |
class ImageEditorDemo:
|
38 |
-
def __init__(self, pipe_inversion, pipe_inference, input_image, description_prompt, cfg):
|
39 |
self.pipe_inversion = pipe_inversion
|
40 |
self.pipe_inference = pipe_inference
|
41 |
self.original_image = load_im_into_format_from_path(input_image).convert("RGB")
|
@@ -44,7 +44,7 @@ class ImageEditorDemo:
|
|
44 |
img_size = (512,512)
|
45 |
VQAE_SCALE = 8
|
46 |
latents_size = (1, 4, img_size[0] // VQAE_SCALE, img_size[1] // VQAE_SCALE)
|
47 |
-
noise = [randn_tensor(latents_size, dtype=torch.float16, device=torch.device(
|
48 |
in range(cfg.num_inversion_steps)]
|
49 |
pipe_inversion.scheduler.set_noise_list(noise)
|
50 |
pipe_inference.scheduler.set_noise_list(noise)
|
@@ -55,10 +55,10 @@ class ImageEditorDemo:
|
|
55 |
self.pipe_inversion.cfg = cfg
|
56 |
self.pipe_inference.cfg = cfg
|
57 |
self.inv_hp = [2, 0.1, 0.2]
|
58 |
-
self.edit_cfg =
|
59 |
|
60 |
-
self.pipe_inference.to(
|
61 |
-
self.pipe_inversion.to(
|
62 |
|
63 |
self.last_latent = self.invert(self.original_image, description_prompt)
|
64 |
self.original_latent = self.last_latent
|
@@ -68,7 +68,7 @@ class ImageEditorDemo:
|
|
68 |
num_inversion_steps=self.cfg.num_inversion_steps,
|
69 |
num_inference_steps=self.cfg.num_inference_steps,
|
70 |
image=init_image,
|
71 |
-
guidance_scale=self.cfg.
|
72 |
callback_on_step_end=inversion_callback,
|
73 |
strength=self.cfg.inversion_max_step,
|
74 |
denoising_start=1.0 - self.cfg.inversion_max_step,
|
|
|
35 |
|
36 |
|
37 |
class ImageEditorDemo:
|
38 |
+
def __init__(self, pipe_inversion, pipe_inference, input_image, description_prompt, cfg, device):
|
39 |
self.pipe_inversion = pipe_inversion
|
40 |
self.pipe_inference = pipe_inference
|
41 |
self.original_image = load_im_into_format_from_path(input_image).convert("RGB")
|
|
|
44 |
img_size = (512,512)
|
45 |
VQAE_SCALE = 8
|
46 |
latents_size = (1, 4, img_size[0] // VQAE_SCALE, img_size[1] // VQAE_SCALE)
|
47 |
+
noise = [randn_tensor(latents_size, dtype=torch.float16, device=torch.device(device), generator=g_cpu) for i
|
48 |
in range(cfg.num_inversion_steps)]
|
49 |
pipe_inversion.scheduler.set_noise_list(noise)
|
50 |
pipe_inference.scheduler.set_noise_list(noise)
|
|
|
55 |
self.pipe_inversion.cfg = cfg
|
56 |
self.pipe_inference.cfg = cfg
|
57 |
self.inv_hp = [2, 0.1, 0.2]
|
58 |
+
self.edit_cfg = cfg.edit_guidance_scale
|
59 |
|
60 |
+
self.pipe_inference.to(device)
|
61 |
+
self.pipe_inversion.to(device)
|
62 |
|
63 |
self.last_latent = self.invert(self.original_image, description_prompt)
|
64 |
self.original_latent = self.last_latent
|
|
|
68 |
num_inversion_steps=self.cfg.num_inversion_steps,
|
69 |
num_inference_steps=self.cfg.num_inference_steps,
|
70 |
image=init_image,
|
71 |
+
guidance_scale=self.cfg.inversion_guidance_scale,
|
72 |
callback_on_step_end=inversion_callback,
|
73 |
strength=self.cfg.inversion_max_step,
|
74 |
denoising_start=1.0 - self.cfg.inversion_max_step,
|
src/sdxl_inversion_pipeline.py
CHANGED
@@ -304,7 +304,10 @@ class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline):
|
|
304 |
|
305 |
def get_timestamp_dist(self, z_0, timesteps):
|
306 |
timesteps = timesteps.to(z_0.device)
|
307 |
-
|
|
|
|
|
|
|
308 |
z_0 = z_0.reshape(-1, 1)
|
309 |
|
310 |
def gaussian_pdf(x):
|
|
|
304 |
|
305 |
def get_timestamp_dist(self, z_0, timesteps):
|
306 |
timesteps = timesteps.to(z_0.device)
|
307 |
+
if "cuda" in str(z_0.device):
|
308 |
+
sigma = self.scheduler.sigmas.cuda()[:-1][self.scheduler.timesteps == timesteps]
|
309 |
+
else:
|
310 |
+
sigma = self.scheduler.sigmas[:-1][self.scheduler.timesteps == timesteps]
|
311 |
z_0 = z_0.reshape(-1, 1)
|
312 |
|
313 |
def gaussian_pdf(x):
|