File size: 5,932 Bytes
6e24cbe
f25bfd1
082faa8
 
f25bfd1
 
c3d416d
f25bfd1
 
 
 
082faa8
f25bfd1
 
 
77ed278
082faa8
f469d2f
f25bfd1
 
082faa8
f25bfd1
 
 
082faa8
f25bfd1
 
082faa8
f25bfd1
 
082faa8
f25bfd1
082faa8
f25bfd1
 
 
 
082faa8
f25bfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d416d
 
f25bfd1
c3d416d
f25bfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d416d
6de338c
f25bfd1
 
 
082faa8
 
f25bfd1
 
 
 
 
 
 
 
082faa8
f25bfd1
 
 
 
 
 
 
 
6de338c
f25bfd1
 
 
 
 
 
c0a15e9
 
f25bfd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

# FLUX.1-dev model
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token = huggingface_token).to(device)

# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Florence caption function
@spaces.GPU
def florence_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<MORE_DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<MORE_DETAILED_CAPTION>"]

# Prompt Enhancer function
def enhance_prompt(input_prompt):
    result = enhancer_long("Enhance the description: " + input_prompt)
    enhanced_text = result[0]['summary_text']
    return enhanced_text

@spaces.GPU(duration=190)
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    if image is not None:
        # Convert image to PIL if it's not already
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        prompt = florence_caption(image)
        print(prompt)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipe(
        prompt=prompt,
        generator=generator,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        guidance_scale=guidance_scale
    ).images[0]
    
    return image, prompt, seed

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">FLUX.1-dev with Florence-2 Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (Florence-2 Captioner)")
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
            
            generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, use_enhancer, seed, randomize_seed,
            width, height, guidance_scale, num_inference_steps
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)