import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM import spaces import requests import copy from PIL import Image, ImageDraw, ImageFont import io import matplotlib.pyplot as plt import matplotlib.patches as patches import random import numpy as np import cv2 import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) model_id = 'microsoft/Florence-2-large' model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval() processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) DESCRIPTION = "# [Florence-2 Video Demo](https://huggingface.co/microsoft/Florence-2-large)" colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] def fig_to_pil(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) return Image.open(buf) @spaces.GPU def run_example(task_prompt, image, text_input=None): if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) return parsed_answer def plot_bbox(image, data): fig, ax = plt.subplots() ax.imshow(image) for bbox, label in zip(data['bboxes'], data['labels']): x1, y1, x2, y2 = bbox rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5)) ax.axis('off') return fig def draw_polygons(image, prediction, fill_mask=False): draw = ImageDraw.Draw(image) scale = 1 for polygons, label in zip(prediction['polygons'], prediction['labels']): color = random.choice(colormap) fill_color = random.choice(colormap) if fill_mask else None for _polygon in polygons: _polygon = np.array(_polygon).reshape(-1, 2) if len(_polygon) < 3: print('Invalid polygon:', _polygon) continue _polygon = (_polygon * scale).reshape(-1).tolist() if fill_mask: draw.polygon(_polygon, outline=color, fill=fill_color) else: draw.polygon(_polygon, outline=color) draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color) return image def draw_ocr_bboxes(image, prediction): scale = 1 draw = ImageDraw.Draw(image) bboxes, labels = prediction['quad_boxes'], prediction['labels'] for box, label in zip(bboxes, labels): color = random.choice(colormap) new_box = (np.array(box) * scale).tolist() draw.polygon(new_box, width=3, outline=color) draw.text((new_box[0]+8, new_box[1]+2), "{}".format(label), align="right", fill=color) return image def process_video(video_path, task_prompt, text_input=None): video = cv2.VideoCapture(video_path) fps = video.get(cv2.CAP_PROP_FPS) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) output_frames = [] while True: ret, frame = video.read() if not ret: break image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) if task_prompt == 'Caption': task_prompt = '' result = run_example(task_prompt, image) output_frames.append(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) elif task_prompt == 'Detailed Caption': task_prompt = '' result = run_example(task_prompt, image) output_frames.append(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) elif task_prompt == 'More Detailed Caption': task_prompt = '' result = run_example(task_prompt, image) output_frames.append(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) elif task_prompt == 'Object Detection': task_prompt = '' results = run_example(task_prompt, image) fig = plot_bbox(image, results['']) output_frames.append(cv2.cvtColor(np.array(fig_to_pil(fig)), cv2.COLOR_RGB2BGR)) elif task_prompt == 'Referring Expression Segmentation': task_prompt = '' results = run_example(task_prompt, image, text_input) annotated_image = draw_polygons(image.copy(), results['']) output_frames.append(cv2.cvtColor(np.array(annotated_image), cv2.COLOR_RGB2BGR)) elif task_prompt == 'OCR': task_prompt = '' results = run_example(task_prompt, image) annotated_image = draw_ocr_bboxes(image.copy(), results['']) output_frames.append(cv2.cvtColor(np.array(annotated_image), cv2.COLOR_RGB2BGR)) else: raise ValueError(f"Unsupported task prompt: {task_prompt}") video.release() output_path = 'output_video.mp4' out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) for frame in output_frames: out.write(frame) out.release() return output_path task_prompts = ['Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection', 'Referring Expression Segmentation', 'OCR'] with gr.Blocks(css="style.css") as demo: with gr.Group(): with gr.Row(): video_input = gr.Video( label='Input Video', format='mp4', source='upload', interactive=True ) with gr.Row(): select_task = gr.Dropdown( label='Task Prompt', choices=task_prompts, value=task_prompts[0], interactive=True ) text_input = gr.Textbox( label='Text Input (optional)', visible=False ) submit = gr.Button( label='Process Video', scale=1, variant='primary' ) video_output = gr.Video( label='Florence-2 Video Demo', format='mp4', interactive=False ) submit.click( fn=process_video, inputs=[video_input, select_task, text_input], outputs=video_output, ) demo.queue().launch()