Spaces:
Runtime error
Runtime error
Michelangiolo
commited on
Commit
•
00bf920
1
Parent(s):
f7ba55e
first push
Browse files- Airbnb_Open_Data.csv +0 -0
- airbnb.ipynb +486 -0
- app.py +91 -0
- df_encoded.parquet +3 -0
Airbnb_Open_Data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
airbnb.ipynb
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/plain": [
|
11 |
+
"Index(['id', 'NAME', 'host id', 'host name', 'neighbourhood group',\n",
|
12 |
+
" 'neighbourhood', 'lat', 'long', 'country', 'country code',\n",
|
13 |
+
" 'instant_bookable', 'cancellation_policy', 'room type',\n",
|
14 |
+
" 'Construction year', 'price', 'service fee', 'minimum nights',\n",
|
15 |
+
" 'number of reviews', 'last review', 'reviews per month',\n",
|
16 |
+
" 'review rate number', 'calculated host listings count',\n",
|
17 |
+
" 'availability 365', 'house_rules', 'license'],\n",
|
18 |
+
" dtype='object')"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
"execution_count": 3,
|
22 |
+
"metadata": {},
|
23 |
+
"output_type": "execute_result"
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"source": [
|
27 |
+
"df.columns"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 71,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [
|
35 |
+
{
|
36 |
+
"name": "stderr",
|
37 |
+
"output_type": "stream",
|
38 |
+
"text": [
|
39 |
+
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_25752\\2207992772.py:4: DtypeWarning: Columns (25) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
40 |
+
" df = pd.read_csv('Airbnb_Open_Data.csv')\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"import pandas as pd\n",
|
46 |
+
"import random\n",
|
47 |
+
"\n",
|
48 |
+
"df = pd.read_csv('Airbnb_Open_Data.csv')\n",
|
49 |
+
"df = df.drop('host_identity_verified', axis=1)\n",
|
50 |
+
"df['description'] = df['NAME']\n",
|
51 |
+
"df['price'] = df['price'].dropna().apply(lambda x : int(x[1:].strip().replace(',', '')))\n",
|
52 |
+
"df['sq. meters'] = df['price'].apply(lambda x : random.choices([25, 40, 45, 55, 60, 70], weights=[5, 5, 4, 3, 2, 1])[0])\n",
|
53 |
+
"df = df[['price', 'sq. meters', 'description', 'neighbourhood group', 'host name', 'cancellation_policy', 'house_rules']]\n",
|
54 |
+
"df = df[df['house_rules']!='#NAME?'].dropna().reset_index(drop=True)\n",
|
55 |
+
"df = df[0:10000]"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 72,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [
|
63 |
+
{
|
64 |
+
"name": "stderr",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"100%|██████████| 10000/10000 [17:37<00:00, 9.45it/s]\n"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"data": {
|
72 |
+
"text/html": [
|
73 |
+
"<div>\n",
|
74 |
+
"<style scoped>\n",
|
75 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
76 |
+
" vertical-align: middle;\n",
|
77 |
+
" }\n",
|
78 |
+
"\n",
|
79 |
+
" .dataframe tbody tr th {\n",
|
80 |
+
" vertical-align: top;\n",
|
81 |
+
" }\n",
|
82 |
+
"\n",
|
83 |
+
" .dataframe thead th {\n",
|
84 |
+
" text-align: right;\n",
|
85 |
+
" }\n",
|
86 |
+
"</style>\n",
|
87 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
88 |
+
" <thead>\n",
|
89 |
+
" <tr style=\"text-align: right;\">\n",
|
90 |
+
" <th></th>\n",
|
91 |
+
" <th>price</th>\n",
|
92 |
+
" <th>sq. meters</th>\n",
|
93 |
+
" <th>description</th>\n",
|
94 |
+
" <th>neighbourhood group</th>\n",
|
95 |
+
" <th>host name</th>\n",
|
96 |
+
" <th>cancellation_policy</th>\n",
|
97 |
+
" <th>house_rules</th>\n",
|
98 |
+
" <th>text_vector_</th>\n",
|
99 |
+
" </tr>\n",
|
100 |
+
" </thead>\n",
|
101 |
+
" <tbody>\n",
|
102 |
+
" <tr>\n",
|
103 |
+
" <th>0</th>\n",
|
104 |
+
" <td>966.0</td>\n",
|
105 |
+
" <td>25</td>\n",
|
106 |
+
" <td>Clean & quiet apt home by the park</td>\n",
|
107 |
+
" <td>Brooklyn</td>\n",
|
108 |
+
" <td>Madaline</td>\n",
|
109 |
+
" <td>strict</td>\n",
|
110 |
+
" <td>Clean up and treat the home the way you'd like...</td>\n",
|
111 |
+
" <td>[-0.047521110624074936, 0.03044620156288147, 0...</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>1</th>\n",
|
115 |
+
" <td>142.0</td>\n",
|
116 |
+
" <td>25</td>\n",
|
117 |
+
" <td>Skylit Midtown Castle</td>\n",
|
118 |
+
" <td>Manhattan</td>\n",
|
119 |
+
" <td>Jenna</td>\n",
|
120 |
+
" <td>moderate</td>\n",
|
121 |
+
" <td>Pet friendly but please confirm with me if the...</td>\n",
|
122 |
+
" <td>[-0.04690079391002655, 0.061329323798418045, 0...</td>\n",
|
123 |
+
" </tr>\n",
|
124 |
+
" <tr>\n",
|
125 |
+
" <th>2</th>\n",
|
126 |
+
" <td>620.0</td>\n",
|
127 |
+
" <td>45</td>\n",
|
128 |
+
" <td>THE VILLAGE OF HARLEM....NEW YORK !</td>\n",
|
129 |
+
" <td>Manhattan</td>\n",
|
130 |
+
" <td>Elise</td>\n",
|
131 |
+
" <td>flexible</td>\n",
|
132 |
+
" <td>I encourage you to use my kitchen, cooking and...</td>\n",
|
133 |
+
" <td>[0.00039011164335533977, 0.018310122191905975,...</td>\n",
|
134 |
+
" </tr>\n",
|
135 |
+
" <tr>\n",
|
136 |
+
" <th>3</th>\n",
|
137 |
+
" <td>204.0</td>\n",
|
138 |
+
" <td>55</td>\n",
|
139 |
+
" <td>Entire Apt: Spacious Studio/Loft by central park</td>\n",
|
140 |
+
" <td>Manhattan</td>\n",
|
141 |
+
" <td>Lyndon</td>\n",
|
142 |
+
" <td>moderate</td>\n",
|
143 |
+
" <td>Please no smoking in the house, porch or on th...</td>\n",
|
144 |
+
" <td>[-0.04602213576436043, 0.015605293214321136, 0...</td>\n",
|
145 |
+
" </tr>\n",
|
146 |
+
" <tr>\n",
|
147 |
+
" <th>4</th>\n",
|
148 |
+
" <td>577.0</td>\n",
|
149 |
+
" <td>25</td>\n",
|
150 |
+
" <td>Large Cozy 1 BR Apartment In Midtown East</td>\n",
|
151 |
+
" <td>Manhattan</td>\n",
|
152 |
+
" <td>Michelle</td>\n",
|
153 |
+
" <td>flexible</td>\n",
|
154 |
+
" <td>No smoking, please, and no drugs.</td>\n",
|
155 |
+
" <td>[-0.04859349876642227, -0.01263828668743372, 0...</td>\n",
|
156 |
+
" </tr>\n",
|
157 |
+
" <tr>\n",
|
158 |
+
" <th>...</th>\n",
|
159 |
+
" <td>...</td>\n",
|
160 |
+
" <td>...</td>\n",
|
161 |
+
" <td>...</td>\n",
|
162 |
+
" <td>...</td>\n",
|
163 |
+
" <td>...</td>\n",
|
164 |
+
" <td>...</td>\n",
|
165 |
+
" <td>...</td>\n",
|
166 |
+
" <td>...</td>\n",
|
167 |
+
" </tr>\n",
|
168 |
+
" <tr>\n",
|
169 |
+
" <th>9995</th>\n",
|
170 |
+
" <td>745.0</td>\n",
|
171 |
+
" <td>60</td>\n",
|
172 |
+
" <td>Upper West Side 1BR next to subway/Central Park</td>\n",
|
173 |
+
" <td>Manhattan</td>\n",
|
174 |
+
" <td>Doreen</td>\n",
|
175 |
+
" <td>strict</td>\n",
|
176 |
+
" <td>Our Herbivorian House manual with detailed rul...</td>\n",
|
177 |
+
" <td>[-0.0346745029091835, -0.005859952419996262, 0...</td>\n",
|
178 |
+
" </tr>\n",
|
179 |
+
" <tr>\n",
|
180 |
+
" <th>9996</th>\n",
|
181 |
+
" <td>1135.0</td>\n",
|
182 |
+
" <td>45</td>\n",
|
183 |
+
" <td>Modern and Bright Studio Apt in Williamsburg</td>\n",
|
184 |
+
" <td>Brooklyn</td>\n",
|
185 |
+
" <td>Shannon</td>\n",
|
186 |
+
" <td>strict</td>\n",
|
187 |
+
" <td>No smoking please!</td>\n",
|
188 |
+
" <td>[-0.016586357727646828, 0.020517650991678238, ...</td>\n",
|
189 |
+
" </tr>\n",
|
190 |
+
" <tr>\n",
|
191 |
+
" <th>9997</th>\n",
|
192 |
+
" <td>59.0</td>\n",
|
193 |
+
" <td>45</td>\n",
|
194 |
+
" <td>Holiday in Trendy Williamsburg Apt!</td>\n",
|
195 |
+
" <td>Brooklyn</td>\n",
|
196 |
+
" <td>Peter</td>\n",
|
197 |
+
" <td>strict</td>\n",
|
198 |
+
" <td>We suggest you use email or texting contact us...</td>\n",
|
199 |
+
" <td>[-0.05095353722572327, 0.08510775864124298, -0...</td>\n",
|
200 |
+
" </tr>\n",
|
201 |
+
" <tr>\n",
|
202 |
+
" <th>9998</th>\n",
|
203 |
+
" <td>1055.0</td>\n",
|
204 |
+
" <td>25</td>\n",
|
205 |
+
" <td>Greenwich Village| Private Queen room</td>\n",
|
206 |
+
" <td>Manhattan</td>\n",
|
207 |
+
" <td>Kelly</td>\n",
|
208 |
+
" <td>flexible</td>\n",
|
209 |
+
" <td>Please treat this house as if it is your own. ...</td>\n",
|
210 |
+
" <td>[0.00017118529649451375, 0.010939894244074821,...</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>9999</th>\n",
|
214 |
+
" <td>285.0</td>\n",
|
215 |
+
" <td>25</td>\n",
|
216 |
+
" <td>Comfortable bedroom in spacious apt</td>\n",
|
217 |
+
" <td>Brooklyn</td>\n",
|
218 |
+
" <td>Arthur</td>\n",
|
219 |
+
" <td>strict</td>\n",
|
220 |
+
" <td>Please, No smoking and no pets. We do require ...</td>\n",
|
221 |
+
" <td>[-0.01795135624706745, -0.029596544802188873, ...</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" </tbody>\n",
|
224 |
+
"</table>\n",
|
225 |
+
"<p>10000 rows × 8 columns</p>\n",
|
226 |
+
"</div>"
|
227 |
+
],
|
228 |
+
"text/plain": [
|
229 |
+
" price sq. meters description \\\n",
|
230 |
+
"0 966.0 25 Clean & quiet apt home by the park \n",
|
231 |
+
"1 142.0 25 Skylit Midtown Castle \n",
|
232 |
+
"2 620.0 45 THE VILLAGE OF HARLEM....NEW YORK ! \n",
|
233 |
+
"3 204.0 55 Entire Apt: Spacious Studio/Loft by central park \n",
|
234 |
+
"4 577.0 25 Large Cozy 1 BR Apartment In Midtown East \n",
|
235 |
+
"... ... ... ... \n",
|
236 |
+
"9995 745.0 60 Upper West Side 1BR next to subway/Central Park \n",
|
237 |
+
"9996 1135.0 45 Modern and Bright Studio Apt in Williamsburg \n",
|
238 |
+
"9997 59.0 45 Holiday in Trendy Williamsburg Apt! \n",
|
239 |
+
"9998 1055.0 25 Greenwich Village| Private Queen room \n",
|
240 |
+
"9999 285.0 25 Comfortable bedroom in spacious apt \n",
|
241 |
+
"\n",
|
242 |
+
" neighbourhood group host name cancellation_policy \\\n",
|
243 |
+
"0 Brooklyn Madaline strict \n",
|
244 |
+
"1 Manhattan Jenna moderate \n",
|
245 |
+
"2 Manhattan Elise flexible \n",
|
246 |
+
"3 Manhattan Lyndon moderate \n",
|
247 |
+
"4 Manhattan Michelle flexible \n",
|
248 |
+
"... ... ... ... \n",
|
249 |
+
"9995 Manhattan Doreen strict \n",
|
250 |
+
"9996 Brooklyn Shannon strict \n",
|
251 |
+
"9997 Brooklyn Peter strict \n",
|
252 |
+
"9998 Manhattan Kelly flexible \n",
|
253 |
+
"9999 Brooklyn Arthur strict \n",
|
254 |
+
"\n",
|
255 |
+
" house_rules \\\n",
|
256 |
+
"0 Clean up and treat the home the way you'd like... \n",
|
257 |
+
"1 Pet friendly but please confirm with me if the... \n",
|
258 |
+
"2 I encourage you to use my kitchen, cooking and... \n",
|
259 |
+
"3 Please no smoking in the house, porch or on th... \n",
|
260 |
+
"4 No smoking, please, and no drugs. \n",
|
261 |
+
"... ... \n",
|
262 |
+
"9995 Our Herbivorian House manual with detailed rul... \n",
|
263 |
+
"9996 No smoking please! \n",
|
264 |
+
"9997 We suggest you use email or texting contact us... \n",
|
265 |
+
"9998 Please treat this house as if it is your own. ... \n",
|
266 |
+
"9999 Please, No smoking and no pets. We do require ... \n",
|
267 |
+
"\n",
|
268 |
+
" text_vector_ \n",
|
269 |
+
"0 [-0.047521110624074936, 0.03044620156288147, 0... \n",
|
270 |
+
"1 [-0.04690079391002655, 0.061329323798418045, 0... \n",
|
271 |
+
"2 [0.00039011164335533977, 0.018310122191905975,... \n",
|
272 |
+
"3 [-0.04602213576436043, 0.015605293214321136, 0... \n",
|
273 |
+
"4 [-0.04859349876642227, -0.01263828668743372, 0... \n",
|
274 |
+
"... ... \n",
|
275 |
+
"9995 [-0.0346745029091835, -0.005859952419996262, 0... \n",
|
276 |
+
"9996 [-0.016586357727646828, 0.020517650991678238, ... \n",
|
277 |
+
"9997 [-0.05095353722572327, 0.08510775864124298, -0... \n",
|
278 |
+
"9998 [0.00017118529649451375, 0.010939894244074821,... \n",
|
279 |
+
"9999 [-0.01795135624706745, -0.029596544802188873, ... \n",
|
280 |
+
"\n",
|
281 |
+
"[10000 rows x 8 columns]"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
"execution_count": 72,
|
285 |
+
"metadata": {},
|
286 |
+
"output_type": "execute_result"
|
287 |
+
}
|
288 |
+
],
|
289 |
+
"source": [
|
290 |
+
"import pandas as pd\n",
|
291 |
+
"from tqdm import tqdm\n",
|
292 |
+
"from sentence_transformers import SentenceTransformer\n",
|
293 |
+
"tqdm.pandas()\n",
|
294 |
+
"\n",
|
295 |
+
"model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2\n",
|
296 |
+
"\n",
|
297 |
+
"#encode df version: for small dataset only\n",
|
298 |
+
"df['text_vector_'] = df['description'].progress_apply(lambda x : model.encode(x).tolist())\n",
|
299 |
+
"df"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": null,
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"df = pd.read_parquet('df_encoded.parquet')\n",
|
309 |
+
"df['neighbourhood group'][0:2500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Manhattan')\n",
|
310 |
+
"df['neighbourhood group'][2500:5000] = df['neighbourhood group'][0:2500].apply(lambda x : 'Brooklyn')\n",
|
311 |
+
"df['neighbourhood group'][5000:7500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Queens')\n",
|
312 |
+
"df['neighbourhood group'][7500:] = df['neighbourhood group'][0:2500].apply(lambda x : 'Bronx')\n",
|
313 |
+
"df['location'] = df['neighbourhood group']\n",
|
314 |
+
"df = df[['price', 'sq. meters', 'description', 'location', 'host name', 'cancellation_policy', 'house_rules', 'text_vector_']]\n",
|
315 |
+
"df = df.reset_index(drop=True)\n",
|
316 |
+
"df"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 145,
|
322 |
+
"metadata": {},
|
323 |
+
"outputs": [],
|
324 |
+
"source": [
|
325 |
+
"from sklearn.neighbors import NearestNeighbors\n",
|
326 |
+
"import numpy as np\n",
|
327 |
+
"import pandas as pd\n",
|
328 |
+
"\n",
|
329 |
+
"from sentence_transformers import SentenceTransformer\n",
|
330 |
+
"\n",
|
331 |
+
"# df = df.read_parquet('df_encoded.parquet')\n",
|
332 |
+
"model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2\n",
|
333 |
+
"\n",
|
334 |
+
"#prepare model\n",
|
335 |
+
"# nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": 213,
|
341 |
+
"metadata": {},
|
342 |
+
"outputs": [
|
343 |
+
{
|
344 |
+
"name": "stderr",
|
345 |
+
"output_type": "stream",
|
346 |
+
"text": [
|
347 |
+
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Slider, please remove them: {'step_size': 100}\n",
|
348 |
+
" warnings.warn(\n",
|
349 |
+
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
|
350 |
+
" warnings.warn(\n"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"name": "stdout",
|
355 |
+
"output_type": "stream",
|
356 |
+
"text": [
|
357 |
+
"Running on local URL: http://127.0.0.1:7901\n",
|
358 |
+
"\n",
|
359 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"data": {
|
364 |
+
"text/html": [
|
365 |
+
"<div><iframe src=\"http://127.0.0.1:7901/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
366 |
+
],
|
367 |
+
"text/plain": [
|
368 |
+
"<IPython.core.display.HTML object>"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
"metadata": {},
|
372 |
+
"output_type": "display_data"
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"data": {
|
376 |
+
"text/plain": []
|
377 |
+
},
|
378 |
+
"execution_count": 213,
|
379 |
+
"metadata": {},
|
380 |
+
"output_type": "execute_result"
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"name": "stdout",
|
384 |
+
"output_type": "stream",
|
385 |
+
"text": [
|
386 |
+
"[[700, 45, 'Queens', 'I want to take a break from work 😴!!!']]\n"
|
387 |
+
]
|
388 |
+
}
|
389 |
+
],
|
390 |
+
"source": [
|
391 |
+
"import gradio as gr\n",
|
392 |
+
"import statistics\n",
|
393 |
+
"\n",
|
394 |
+
"def closest_number(x):\n",
|
395 |
+
" closest_numbers = [10, 20, 30, 40]\n",
|
396 |
+
" closest_number = closest_numbers[0]\n",
|
397 |
+
" min_distance = abs(x - closest_number)\n",
|
398 |
+
" for number in closest_numbers[1:]:\n",
|
399 |
+
" distance = abs(x - number)\n",
|
400 |
+
" if distance < min_distance:\n",
|
401 |
+
" closest_number = number\n",
|
402 |
+
" min_distance = distance\n",
|
403 |
+
" return closest_number\n",
|
404 |
+
"\n",
|
405 |
+
"def search(df, query):\n",
|
406 |
+
" product = model.encode(query).tolist()\n",
|
407 |
+
" # product = df.iloc[0]['text_vector_'] #use one of the products as sample\n",
|
408 |
+
"\n",
|
409 |
+
" nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())\n",
|
410 |
+
" distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object\n",
|
411 |
+
"\n",
|
412 |
+
" #print out the description of every recommended product\n",
|
413 |
+
" df_search = df.iloc[list(indices)[0]].drop(['text_vector_'], axis=1) #.sort_values('avgFeedbackScore', ascending=False)\n",
|
414 |
+
"\n",
|
415 |
+
" return df_search.sort_values('price', ascending=False)\n",
|
416 |
+
"\n",
|
417 |
+
"def filter_df(df, column_name, filter_type, filter_value):\n",
|
418 |
+
" if filter_type == '==':\n",
|
419 |
+
" df_filtered = df[df[column_name]==filter_value]\n",
|
420 |
+
" elif filter_type == '>=':\n",
|
421 |
+
" df_filtered = df[df[column_name]>=filter_value]\n",
|
422 |
+
" elif filter_type == '<=':\n",
|
423 |
+
" df_filtered = df[df[column_name]<=filter_value]\n",
|
424 |
+
" return df_filtered\n",
|
425 |
+
"\n",
|
426 |
+
"history = list()\n",
|
427 |
+
"def predict(input1, input2, input3, input4):\n",
|
428 |
+
" history.append([input1, input2, input3, input4])\n",
|
429 |
+
"\n",
|
430 |
+
" print(history)\n",
|
431 |
+
" df_location = filter_df(df, 'location', '==', input3)\n",
|
432 |
+
" df_size = filter_df(df_location, 'sq. meters', '==', input2)\n",
|
433 |
+
" df_price = filter_df(df_size, 'price', '<=', input1)\n",
|
434 |
+
" df_result = search(df_price, input4)\n",
|
435 |
+
"\n",
|
436 |
+
" prediction = [\n",
|
437 |
+
" round(statistics.mean([x[0] for x in history])), #price\n",
|
438 |
+
" closest_number(statistics.mean([x[1] for x in history])), #square room\n",
|
439 |
+
" statistics.mode([x[2] for x in history]) #state\n",
|
440 |
+
" ]\n",
|
441 |
+
"\n",
|
442 |
+
" return df_result, prediction\n",
|
443 |
+
"\n",
|
444 |
+
"with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:\n",
|
445 |
+
" gr.Markdown(\n",
|
446 |
+
" \"\"\"\n",
|
447 |
+
" # Airbnb Search Engine\n",
|
448 |
+
" \"\"\"\n",
|
449 |
+
" )\n",
|
450 |
+
" input1 = gr.Slider(100, 1200, value=700, step_size=100, label=\"Max Price\")\n",
|
451 |
+
" input2 = gr.Radio([25, 40, 45, 55, 60, 70], multiselect=False, label='square meters', value=45)\n",
|
452 |
+
" input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Queens')\n",
|
453 |
+
" input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')\n",
|
454 |
+
"\n",
|
455 |
+
" btn = gr.Button(value=\"Search for a Room\")\n",
|
456 |
+
" output1 = gr.Dataframe()\n",
|
457 |
+
" output2 = gr.Textbox(label='prediction for the next search')\n",
|
458 |
+
" # btn.click(greet, inputs='text', outputs=['dataframe'])\n",
|
459 |
+
" btn.click(predict, [input1, input2, input3, input4], [output1, output2])\n",
|
460 |
+
"demo.launch(share=False)"
|
461 |
+
]
|
462 |
+
}
|
463 |
+
],
|
464 |
+
"metadata": {
|
465 |
+
"kernelspec": {
|
466 |
+
"display_name": "Python 3",
|
467 |
+
"language": "python",
|
468 |
+
"name": "python3"
|
469 |
+
},
|
470 |
+
"language_info": {
|
471 |
+
"codemirror_mode": {
|
472 |
+
"name": "ipython",
|
473 |
+
"version": 3
|
474 |
+
},
|
475 |
+
"file_extension": ".py",
|
476 |
+
"mimetype": "text/x-python",
|
477 |
+
"name": "python",
|
478 |
+
"nbconvert_exporter": "python",
|
479 |
+
"pygments_lexer": "ipython3",
|
480 |
+
"version": "3.9.13"
|
481 |
+
},
|
482 |
+
"orig_nbformat": 4
|
483 |
+
},
|
484 |
+
"nbformat": 4,
|
485 |
+
"nbformat_minor": 2
|
486 |
+
}
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install openpyxl')
|
3 |
+
os.system('pip install sentence-transformers')
|
4 |
+
import pandas as pd
|
5 |
+
import gradio as gr
|
6 |
+
import statistics
|
7 |
+
from sklearn.neighbors import NearestNeighbors
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
|
10 |
+
df = pd.read_parquet('df_encoded.parquet')
|
11 |
+
df['neighbourhood group'][0:2500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Manhattan')
|
12 |
+
df['neighbourhood group'][2500:5000] = df['neighbourhood group'][0:2500].apply(lambda x : 'Brooklyn')
|
13 |
+
df['neighbourhood group'][5000:7500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Queens')
|
14 |
+
df['neighbourhood group'][7500:] = df['neighbourhood group'][0:2500].apply(lambda x : 'Bronx')
|
15 |
+
df['location'] = df['neighbourhood group']
|
16 |
+
df = df[['price', 'sq. meters', 'description', 'location', 'host name', 'cancellation_policy', 'house_rules', 'text_vector_']]
|
17 |
+
df = df.reset_index(drop=True)
|
18 |
+
df
|
19 |
+
|
20 |
+
model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2
|
21 |
+
|
22 |
+
#prepare model #we run it anew in the search function every time, after the initial filtering
|
23 |
+
# nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())
|
24 |
+
|
25 |
+
def closest_number(x):
|
26 |
+
closest_numbers = [10, 20, 30, 40]
|
27 |
+
closest_number = closest_numbers[0]
|
28 |
+
min_distance = abs(x - closest_number)
|
29 |
+
for number in closest_numbers[1:]:
|
30 |
+
distance = abs(x - number)
|
31 |
+
if distance < min_distance:
|
32 |
+
closest_number = number
|
33 |
+
min_distance = distance
|
34 |
+
return closest_number
|
35 |
+
|
36 |
+
def search(df, query):
|
37 |
+
product = model.encode(query).tolist()
|
38 |
+
# product = df.iloc[0]['text_vector_'] #use one of the products as sample
|
39 |
+
|
40 |
+
nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())
|
41 |
+
distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object
|
42 |
+
|
43 |
+
#print out the description of every recommended product
|
44 |
+
df_search = df.iloc[list(indices)[0]].drop(['text_vector_'], axis=1) #.sort_values('avgFeedbackScore', ascending=False)
|
45 |
+
|
46 |
+
return df_search.sort_values('price', ascending=False)
|
47 |
+
|
48 |
+
def filter_df(df, column_name, filter_type, filter_value):
|
49 |
+
if filter_type == '==':
|
50 |
+
df_filtered = df[df[column_name]==filter_value]
|
51 |
+
elif filter_type == '>=':
|
52 |
+
df_filtered = df[df[column_name]>=filter_value]
|
53 |
+
elif filter_type == '<=':
|
54 |
+
df_filtered = df[df[column_name]<=filter_value]
|
55 |
+
return df_filtered
|
56 |
+
|
57 |
+
history = list()
|
58 |
+
def predict(input1, input2, input3, input4):
|
59 |
+
history.append([input1, input2, input3, input4])
|
60 |
+
|
61 |
+
print(history)
|
62 |
+
df_location = filter_df(df, 'location', '==', input3)
|
63 |
+
df_size = filter_df(df_location, 'sq. meters', '==', input2)
|
64 |
+
df_price = filter_df(df_size, 'price', '<=', input1)
|
65 |
+
df_result = search(df_price, input4)
|
66 |
+
|
67 |
+
prediction = [
|
68 |
+
round(statistics.mean([x[0] for x in history])), #price
|
69 |
+
closest_number(statistics.mean([x[1] for x in history])), #square room
|
70 |
+
statistics.mode([x[2] for x in history]) #state
|
71 |
+
]
|
72 |
+
|
73 |
+
return df_result, prediction
|
74 |
+
|
75 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:
|
76 |
+
gr.Markdown(
|
77 |
+
"""
|
78 |
+
# Airbnb Search Engine
|
79 |
+
"""
|
80 |
+
)
|
81 |
+
input1 = gr.Slider(100, 1200, value=700, step_size=100, label="Max Price")
|
82 |
+
input2 = gr.Radio([25, 40, 45, 55, 60, 70], multiselect=False, label='square meters', value=45)
|
83 |
+
input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Queens')
|
84 |
+
input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')
|
85 |
+
|
86 |
+
btn = gr.Button(value="Search for a Room")
|
87 |
+
output1 = gr.Dataframe()
|
88 |
+
output2 = gr.Textbox(label='prediction for the next search')
|
89 |
+
# btn.click(greet, inputs='text', outputs=['dataframe'])
|
90 |
+
btn.click(predict, [input1, input2, input3, input4], [output1, output2])
|
91 |
+
demo.launch(share=False)
|
df_encoded.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efe09f27cabb790b1de79ba1483bceded0499ef48627bde47756b1905dd72a91
|
3 |
+
size 48169491
|