bot-consultant / gpt3_function.py
Michelangiolo's picture
first push
f33a891
import requests
import os
#openai
# openai_api_key = os.environ['GPT3_API_KEY_OPENAI']
#azure
azure_api_key = os.environ['GPT3_API_KEY_AZURE']
azure_api_base = "https://openai-619.openai.azure.com/" # your endpoint should look like the following https://YOUR_RESOURCE_NAME.openai.azure.com/
azure_api_type = 'azure'
azure_api_version = '2022-12-01' # this may change in the future
def gpt3(prompt, model, service, max_tokens=400):
if service == 'openai':
if model == 'gpt-3.5-turbo':
api_endpoint = "https://api.openai.com/v1/chat/completions"
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": prompt}]
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
response = requests.post(api_endpoint, headers=headers, json=data)
print(response)
return response.json()['choices'][0]['message']['content']
elif model == 'gpt-3':
api_endpoint = "https://api.openai.com/v1/engines/text-davinci-003/completions"
data = {
"prompt": prompt,
"max_tokens": max_tokens,
"temperature": 0.5
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
response = requests.post(api_endpoint, headers=headers, json=data)
return response.json()["choices"][0]["text"]
elif service == 'azure':
if model == 'gpt-3':
azure_deployment_name='gpt3'
api_endpoint = f"""{azure_api_base}openai/deployments/{azure_deployment_name}/completions?api-version={azure_api_version}"""
headers = {
"Content-Type": "application/json",
"api-key": azure_api_key
}
data = {
"prompt": prompt,
"max_tokens": max_tokens
}
response = requests.post(api_endpoint, headers=headers, json=data)
generated_text = response.json()["choices"][0]["text"]
return generated_text
elif model == 'gpt-3.5-turbo':
azure_deployment_name='gpt-35-turbo' #cannot be creative with the name
headers = {
"Content-Type": "application/json",
"api-key": azure_api_key
}
json_data = {
'messages': [
{
'role': 'user',
'content': prompt,
},
],
}
api_endpoint = f"""{azure_api_base}openai/deployments/{azure_deployment_name}/chat/completions?api-version=2023-03-15-preview"""
response = requests.post(api_endpoint, headers=headers, json=json_data)
return response.json()['choices'][0]['message']['content']
#azure is much more sensible to max_tokens
gpt3('how are you?', model='gpt-3.5-turbo', service='azure')