import os os.system('pip install openpyxl') os.system('pip install sentence-transformers') import pandas as pd import gradio as gr from sentence_transformers import SentenceTransformer gpt3_api_key = os.environ['GPT3_API_KEY_CIVILIENCE'] # gpt3_api_key = os.environ['GPT3_API_KEY_ROBERT'] model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2 df = pd.read_parquet('df_encoded3.parquet') df['tags'] = df['tags'].apply(lambda x : str(x)) def parse_raised(x): if x == 'Undisclosed': return 0 else: quantifier = x[-1] x = float(x[1:-1]) if quantifier == 'K': return x/1000 elif quantifier == 'M': return x df['raised'] = df['raised'].apply(lambda x : parse_raised(x)) df['stage'] = df['stage'].apply(lambda x : x.lower()) df = df.reset_index(drop=True) from sklearn.neighbors import NearestNeighbors import pandas as pd from sentence_transformers import SentenceTransformer nbrs = NearestNeighbors(n_neighbors=5000, algorithm='ball_tree').fit(df['text_vector_'].values.tolist()) def search(df, query): product = model.encode(query).tolist() # product = df.iloc[0]['text_vector_'] #use one of the products as sample #prepare model # distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object #print out the description of every recommended product return df.iloc[list(indices)[0]][['name', 'raised', 'target', 'size', 'stage', 'country', 'source', 'description', 'tags', 'text_vector_']] def filter_df(df, column_name, filter_type, filter_value, minimum_acceptable_size=0): if filter_type == '==': df_filtered = df[df[column_name]==filter_value] elif filter_type == '>=': df_filtered = df[df[column_name]>=filter_value] elif filter_type == '<=': df_filtered = df[df[column_name]<=filter_value] elif filter_type == 'contains': df_filtered = df[df['target'].str.contains(filter_value)] if df_filtered.size >= minimum_acceptable_size: return df_filtered else: return df import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity def score_filter(df, query, min_score): # Define function to compute cosine similarity between two vectors def cosine_sim(query, vector): return cosine_similarity([query], [vector])[0][0] # df_results = search(df, 'age reversing')[0:50] vector_col = np.array(df['text_vector_'].tolist()) # Define query vector query = model.encode([query])[0] # Compute cosine similarity between query vector and every sample vector df['similarity'] = np.apply_along_axis(cosine_sim, 1, vector_col, query) df = df[df['similarity']>=min_score] return df import requests def gpt3_question(api_key, prompt): api_endpoint = "https://api.openai.com/v1/engines/text-davinci-003/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } data = { "prompt": prompt, "max_tokens": 500, "temperature": 0.7 } print('sending request') response = requests.post(api_endpoint, headers=headers, json=data) print(response.text) generated_text = response.json()["choices"][0]["text"] return generated_text def competitor_analysis_foo(startup_array, max_paragraphs): prompt = f""" {str(startup_array)} This is a list of startups in the following format: [name, stage, description]: Write a {max_paragraphs} paragraph competitors analysis based on this data. Do not name the paragraphs. """ response = gpt3_question(gpt3_api_key, prompt) for x in range(10): response = response.replace(f'Paragraph {x}:', '') response = response.replace(f'Paragraph {x}', '') response = response.replace('\n\n', '\n').strip() # with open('competitor_analysis.txt', 'w') as file: # file.write(response) return response #the first module becomes text1, the second module file1 def vector_search(size, target, stage, query, var_metadata, var_fresh): #greet('11-500+', 'B2B', 'pre-seed', 'age-reversing') def raised_zero(x): if x == 0: return 'Undisclosed' else: return x df_knn = search(df, query) df_knn['raised'] = df_knn['raised'].apply(lambda x : raised_zero(x)) df_size = filter_df(df_knn, 'size', '==', size, 1) if stage != 'ALL': df_stage = filter_df(df_size, 'stage', '==', stage.lower(), 1) else: #we bypass the filter df_stage = df_size df_target = filter_df(df_stage, 'target', 'contains', target, 1) # display(df_stage) # df_raised = df_target[(df_target['raised'] >= raised) | (df_target['raised'] == 0)] return df_target.drop('text_vector_', axis=1)[0:100], df_target[0:100], True #.sort_values('raised', ascending=False) def write_competitor_analysis(var_metadata, query, var_fresh): if var_fresh == True: df_final = score_filter(var_metadata, query, 0.35) df_final = df_final[['name', 'stage', 'description']][0:10].values.tolist() if len(df_final) == 0: # df_final = df_final[['name', 'stage', 'description']][0:3].values.tolist() # response = competitor_analysis_foo(startup_array=df_final, max_paragraphs=1) response = 'score too low to output valid results' if len(df_final) >= 1 and len(df_final) <= 3: response = competitor_analysis_foo(startup_array=df_final, max_paragraphs=1) elif len(df_final) > 3 and len(df_final) <= 5: response = competitor_analysis_foo(startup_array=df_final, max_paragraphs=2) elif len(df_final) > 6: response = competitor_analysis_foo(startup_array=df_final, max_paragraphs=3) return response, False #we reset fresh state else: return 'Perform a new Startup Search first', False #we reset fresh state with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo: gr.Markdown( """ # Startup Search Engine """ ) var_fresh = gr.Variable(value=False) var_metadata = gr.Variable(value=0) var_query = gr.Variable(value=0) size = gr.Radio(['1-10', '11-50', '51-200', '201-500', '500+', '11-500+'], multiselect=False, value='11-500+', label='size') target = gr.Radio(['B2B', 'B2C', 'B2G', 'B2B2C'], multiselect=False, value='B2B', label='target') stage = gr.Radio(['pre-seed', 'A', 'B', 'C', 'ALL'], multiselect=False, value='ALL', label='stage') # raised = gr.Slider(0, 20, value=5, step_size=1, label="Minimum raising (in Millions)") query = gr.Textbox(label='Describe the Startup you are searching for', value='age reversing') # competitor_analysis = gr.Radio(['write', 'do not write'], multiselect=False, value='do not write', label='write a competitor analysis') btn2 = gr.Button(value="Search for a Startup") btn1 = gr.Button(value="Write a competitor analysis") output1 = gr.Textbox(label='competitor analysis') output2 = gr.DataFrame(label='value') btn1.click(write_competitor_analysis, [var_metadata, query, var_fresh], [output1, var_fresh]) #competitor analysis btn2.click(vector_search, [size, target, stage, query, var_metadata, var_fresh], [output2, var_metadata, var_fresh]) #startup search demo.launch(share=False)