Spaces:
Running
Running
File size: 9,490 Bytes
ca56e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import multiprocessing
import os
from typing import Optional, Dict, List, Union
import dotenv
from loguru import logger
from pydantic import BaseModel, Field
from api.utils.compat import model_json, disable_warnings
dotenv.load_dotenv()
disable_warnings(BaseModel)
def get_bool_env(key, default="false"):
return os.environ.get(key, default).lower() == "true"
def get_env(key, default):
val = os.environ.get(key, "")
return val or default
class Settings(BaseModel):
""" Settings class. """
host: Optional[str] = Field(
default=get_env("HOST", "0.0.0.0"),
description="Listen address.",
)
port: Optional[int] = Field(
default=int(get_env("PORT", 8000)),
description="Listen port.",
)
api_prefix: Optional[str] = Field(
default=get_env("API_PREFIX", "/v1"),
description="API prefix.",
)
engine: Optional[str] = Field(
default=get_env("ENGINE", "default"),
description="Choices are ['default', 'vllm', 'llama.cpp', 'tgi'].",
)
# model related
model_name: Optional[str] = Field(
default=get_env("MODEL_NAME", None),
description="The name of the model to use for generating completions."
)
model_path: Optional[str] = Field(
default=get_env("MODEL_PATH", None),
description="The path to the model to use for generating completions."
)
adapter_model_path: Optional[str] = Field(
default=get_env("ADAPTER_MODEL_PATH", None),
description="Path to a LoRA file to apply to the model."
)
resize_embeddings: Optional[bool] = Field(
default=get_bool_env("RESIZE_EMBEDDINGS"),
description="Whether to resize embeddings."
)
dtype: Optional[str] = Field(
default=get_env("DTYPE", "half"),
description="Precision dtype."
)
# device related
device: Optional[str] = Field(
default=get_env("DEVICE", "cuda"),
description="Device to load the model."
)
device_map: Optional[Union[str, Dict]] = Field(
default=get_env("DEVICE_MAP", None),
description="Device map to load the model."
)
gpus: Optional[str] = Field(
default=get_env("GPUS", None),
description="Specify which gpus to load the model."
)
num_gpus: Optional[int] = Field(
default=int(get_env("NUM_GPUs", 1)),
ge=0,
description="How many gpus to load the model."
)
# embedding related
only_embedding: Optional[bool] = Field(
default=get_bool_env("ONLY_EMBEDDING"),
description="Whether to launch embedding server only."
)
embedding_name: Optional[str] = Field(
default=get_env("EMBEDDING_NAME", None),
description="The path to the model to use for generating embeddings."
)
embedding_size: Optional[int] = Field(
default=int(get_env("EMBEDDING_SIZE", -1)),
description="The embedding size to use for generating embeddings."
)
embedding_device: Optional[str] = Field(
default=get_env("EMBEDDING_DEVICE", "cuda"),
description="Device to load the model."
)
# quantize related
quantize: Optional[int] = Field(
default=int(get_env("QUANTIZE", 16)),
description="Quantize level for model."
)
load_in_8bit: Optional[bool] = Field(
default=get_bool_env("LOAD_IN_8BIT"),
description="Whether to load the model in 8 bit."
)
load_in_4bit: Optional[bool] = Field(
default=get_bool_env("LOAD_IN_4BIT"),
description="Whether to load the model in 4 bit."
)
using_ptuning_v2: Optional[bool] = Field(
default=get_bool_env("USING_PTUNING_V2"),
description="Whether to load the model using ptuning_v2."
)
pre_seq_len: Optional[int] = Field(
default=int(get_env("PRE_SEQ_LEN", 128)),
ge=0,
description="PRE_SEQ_LEN for ptuning_v2."
)
# context related
context_length: Optional[int] = Field(
default=int(get_env("CONTEXT_LEN", -1)),
ge=-1,
description="Context length for generating completions."
)
chat_template: Optional[str] = Field(
default=get_env("PROMPT_NAME", None),
description="Chat template for generating completions."
)
patch_type: Optional[str] = Field(
default=get_env("PATCH_TYPE", None),
description="Patch type for generating completions."
)
alpha: Optional[Union[str, float]] = Field(
default=get_env("ALPHA", "auto"),
description="Alpha for generating completions."
)
# vllm related
trust_remote_code: Optional[bool] = Field(
default=get_bool_env("TRUST_REMOTE_CODE"),
description="Whether to use remote code."
)
tokenize_mode: Optional[str] = Field(
default=get_env("TOKENIZE_MODE", "auto"),
description="Tokenize mode for vllm server."
)
tensor_parallel_size: Optional[int] = Field(
default=int(get_env("TENSOR_PARALLEL_SIZE", 1)),
ge=1,
description="Tensor parallel size for vllm server."
)
gpu_memory_utilization: Optional[float] = Field(
default=float(get_env("GPU_MEMORY_UTILIZATION", 0.9)),
description="GPU memory utilization for vllm server."
)
max_num_batched_tokens: Optional[int] = Field(
default=int(get_env("MAX_NUM_BATCHED_TOKENS", -1)),
ge=-1,
description="Max num batched tokens for vllm server."
)
max_num_seqs: Optional[int] = Field(
default=int(get_env("MAX_NUM_SEQS", 256)),
ge=1,
description="Max num seqs for vllm server."
)
quantization_method: Optional[str] = Field(
default=get_env("QUANTIZATION_METHOD", None),
description="Quantization method for vllm server."
)
# support for transformers.TextIteratorStreamer
use_streamer_v2: Optional[bool] = Field(
default=get_bool_env("USE_STREAMER_V2"),
description="Support for transformers.TextIteratorStreamer."
)
# support for api key check
api_keys: Optional[List[str]] = Field(
default=get_env("API_KEYS", "").split(",") if get_env("API_KEYS", "") else None,
description="Support for api key check."
)
activate_inference: Optional[bool] = Field(
default=get_bool_env("ACTIVATE_INFERENCE", "true"),
description="Whether to activate inference."
)
interrupt_requests: Optional[bool] = Field(
default=get_bool_env("INTERRUPT_REQUESTS", "true"),
description="Whether to interrupt requests when a new request is received.",
)
# support for llama.cpp
n_gpu_layers: Optional[int] = Field(
default=int(get_env("N_GPU_LAYERS", 0)),
ge=-1,
description="The number of layers to put on the GPU. The rest will be on the CPU. Set -1 to move all to GPU.",
)
main_gpu: Optional[int] = Field(
default=int(get_env("MAIN_GPU", 0)),
ge=0,
description="Main GPU to use.",
)
tensor_split: Optional[List[float]] = Field(
default=float(get_env("TENSOR_SPLIT", None)) if get_env("TENSOR_SPLIT", None) else None,
description="Split layers across multiple GPUs in proportion.",
)
n_batch: Optional[int] = Field(
default=int(get_env("N_BATCH", 512)),
ge=1,
description="The batch size to use per eval."
)
n_threads: Optional[int] = Field(
default=int(get_env("N_THREADS", max(multiprocessing.cpu_count() // 2, 1))),
ge=1,
description="The number of threads to use.",
)
n_threads_batch: Optional[int] = Field(
default=int(get_env("N_THREADS_BATCH", max(multiprocessing.cpu_count() // 2, 1))),
ge=0,
description="The number of threads to use when batch processing.",
)
rope_scaling_type: Optional[int] = Field(
default=int(get_env("ROPE_SCALING_TYPE", -1))
)
rope_freq_base: Optional[float] = Field(
default=float(get_env("ROPE_FREQ_BASE", 0.0)),
description="RoPE base frequency"
)
rope_freq_scale: Optional[float] = Field(
default=float(get_env("ROPE_FREQ_SCALE", 0.0)),
description="RoPE frequency scaling factor",
)
# support for tgi: https://github.com/huggingface/text-generation-inference
tgi_endpoint: Optional[str] = Field(
default=get_env("TGI_ENDPOINT", None),
description="Text Generation Inference Endpoint.",
)
# support for tei: https://github.com/huggingface/text-embeddings-inference
tei_endpoint: Optional[str] = Field(
default=get_env("TEI_ENDPOINT", None),
description="Text Embeddings Inference Endpoint.",
)
max_concurrent_requests: Optional[int] = Field(
default=int(get_env("MAX_CONCURRENT_REQUESTS", 256)),
description="The maximum amount of concurrent requests for this particular deployment."
)
max_client_batch_size: Optional[int] = Field(
default=int(get_env("MAX_CLIENT_BATCH_SIZE", 32)),
description="Control the maximum number of inputs that a client can send in a single request."
)
SETTINGS = Settings()
logger.debug(f"SETTINGS: {model_json(SETTINGS, indent=4)}")
if SETTINGS.gpus:
if len(SETTINGS.gpus.split(",")) < SETTINGS.num_gpus:
raise ValueError(
f"Larger --num_gpus ({SETTINGS.num_gpus}) than --gpus {SETTINGS.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = SETTINGS.gpus
|