gpt-99's picture
removing sounddevice for gradio
a27181e
raw
history blame
10 kB
import torch
import torchaudio
import gradio as gr
from transformers import AutoProcessor, AutoModel
import warnings
import traceback
import gc
warnings.filterwarnings("ignore")
class OptimizedContinuousTranslator:
def __init__(self, target_language="spa", chunk_duration=3, sample_rate=16000):
try:
self.processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
self.model = AutoModel.from_pretrained("facebook/seamless-m4t-v2-large")
self.target_language = target_language
except Exception as e:
print(f"Error loading model: {e}")
self.processor = None
self.model = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def wav_to_tensor(self, file_path, sampling_rate):
"""
Converts a WAV file into a PyTorch tensor.
Args:
file_path (str): Path to the WAV file.
Returns:
torch.Tensor: Audio tensor.
int: Sampling rate of the audio.
"""
# Load the WAV file
waveform, sample_rate = torchaudio.load(file_path)
# Resample if the original sampling rate is not 16000 Hz
if sample_rate != sampling_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=sampling_rate)
waveform = resampler(waveform)
return waveform, sampling_rate
def translate_audio(self, audio_file_path):
"""
Enhanced audio translation with improved error handling and memory management
Args:
audio (torch.Tensor): Audio chunk to translate
Returns:
str: Translated text or error message
"""
print("REACHED")
if audio_file_path is None or self.processor is None or self.model is None:
print(f"{audio_file_path} {self.processor} {self.model}")
return ""
try:
# Prepare audio inputs
wavform, sample_rate = self.wav_to_tensor(audio_file_path, 16000)
audio_inputs = self.processor(audios=wavform.unsqueeze(0), return_tensors="pt", sampling_rate=sample_rate)
# Move inputs to the correct device
audio_inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v
for k, v in audio_inputs.items()}
# Generate translation
output_tokens = self.model.generate(
**audio_inputs,
tgt_lang=self.target_language,
generate_speech=False
)
# Decode the translated text
translated_text = self.processor.decode(
output_tokens[0].tolist()[0],
skip_special_tokens=True
)
print(translated_text)
return translated_text
except Exception as e:
error_message = f"Translation error: {str(e)}"
stack_trace = traceback.format_exc()
print(f"{error_message}\n{stack_trace}")
return ""
finally:
# Aggressive memory cleanup
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# web app
# simple translator (no real time)
def create_translator_interface():
"""Create the optimized Gradio interface for the Continuous Translator"""
# Initialize the translator
translator = OptimizedContinuousTranslator()
with gr.Blocks(title="Continuous Audio Translator") as demo:
# Usage Instructions in a Markdown Dropdown
gr.Markdown("""
## ๐ŸŽ™๏ธ Audio Translator: How to Use
<details>
<summary>Click to view usage instructions</summary>
### ๐ŸŒ Translation Steps
1. **Select Target Language**:
- Choose the language you want to translate to from the dropdown menu
2. **Record Audio**:
- Click on the microphone icon in the audio input area
- Record your audio clearly and concisely
- Ensure minimal background noise for best results
3. **Translate**:
- After recording, click the "Translate" button
- The translated text will appear in the transcript box below
### ๐Ÿ’ก Tips
- Speak clearly and at a moderate pace
- Avoid complex or technical language for more accurate translations
- The translation works best with shorter, simpler sentences
- Maximum recommended recording time is around 30 seconds
### ๐ŸŒ Supported Languages
- Input: Currently supports clear spoken language
- Output: Any of the languages you choose from
</details>
""")
languages = {
"afr": "Afrikaans",
"amh": "Amharic",
"arb": "Modern Standard Arabic",
"ary": "Moroccan Arabic",
"arz": "Egyptian Arabic",
"asm": "Assamese",
"ast": "Asturian",
"azj": "North Azerbaijani",
"bel": "Belarusian",
"ben": "Bengali",
"bos": "Bosnian",
"bul": "Bulgarian",
"cat": "Catalan",
"ceb": "Cebuano",
"ces": "Czech",
"ckb": "Central Kurdish",
"cmn": "Mandarin Chinese",
"cmn_Hant": "Mandarin Chinese (Traditional)",
"cym": "Welsh",
"dan": "Danish",
"deu": "German",
"ell": "Greek",
"eng": "English",
"est": "Estonian",
"eus": "Basque",
"fin": "Finnish",
"fra": "French",
"fuv": "Nigerian Fulfulde",
"gaz": "West Central Oromo",
"gle": "Irish",
"glg": "Galician",
"guj": "Gujarati",
"heb": "Hebrew",
"hin": "Hindi",
"hrv": "Croatian",
"hun": "Hungarian",
"hye": "Armenian",
"ibo": "Igbo",
"ind": "Indonesian",
"isl": "Icelandic",
"ita": "Italian",
"jav": "Javanese",
"jpn": "Japanese",
"kam": "Kamba",
"kan": "Kannada",
"kat": "Georgian",
"kaz": "Kazakh",
"kea": "Kabuverdianu",
"khk": "Halh Mongolian",
"khm": "Khmer",
"kir": "Kyrgyz",
"kor": "Korean",
"lao": "Lao",
"lit": "Lithuanian",
"ltz": "Luxembourgish",
"lug": "Ganda",
"luo": "Luo",
"lvs": "Standard Latvian",
"mai": "Maithili",
"mal": "Malayalam",
"mar": "Marathi",
"mkd": "Macedonian",
"mlt": "Maltese",
"mni": "Meitei",
"mya": "Burmese",
"nld": "Dutch",
"nno": "Norwegian Nynorsk",
"nob": "Norwegian Bokmรฅl",
"npi": "Nepali",
"nya": "Nyanja",
"oci": "Occitan",
"ory": "Odia",
"pan": "Punjabi",
"pbt": "Southern Pashto",
"pes": "Western Persian",
"pol": "Polish",
"por": "Portuguese",
"ron": "Romanian",
"rus": "Russian",
"slk": "Slovak",
"slv": "Slovenian",
"sna": "Shona",
"snd": "Sindhi",
"som": "Somali",
"spa": "Spanish",
"srp": "Serbian",
"swe": "Swedish",
"swh": "Swahili",
"tam": "Tamil",
"tel": "Telugu",
"tgk": "Tajik",
"tgl": "Tagalog",
"tha": "Thai",
"tur": "Turkish",
"ukr": "Ukrainian",
"urd": "Urdu",
"uzn": "Northern Uzbek",
"vie": "Vietnamese",
"xho": "Xhosa",
"yor": "Yoruba",
"yue": "Cantonese",
"zlm": "Colloquial Malay",
"zsm": "Standard Malay",
"zul": "Zulu",
}
# Language Dropdown
with gr.Row():
# Generate the choices for the dropdown: display names mapped to their keys
language_choices = [(name, code) for code, name in languages.items()]
language_dropdown = gr.Dropdown(
choices=language_choices, # Each choice is a (display, value) tuple
value="spa", # Default value corresponds to the key
label="Target Language",
scale=2
)
# Audio Input
audio_input = gr.Audio(label="Record Audio", sources="microphone", type="filepath")
# Display Components
transcript_box = gr.Textbox(label="Full Transcript", lines=10, interactive=False)
# Control Buttons
with gr.Row():
start_btn = gr.Button("Translate")
# Define the translation action
def handle_translation(audio_file, target_language):
"""Handle the audio file and pass it to the translator for processing."""
if not audio_file:
return "No audio file provided. Please record and try again."
translator.target_language = target_language # Set the target language in the translator
try:
translated_text = translator.translate_audio(audio_file)
return translated_text if translated_text else "Translation failed."
except Exception as e:
return f"Error: {str(e)}"
# Set the Gradio action
start_btn.click(
fn=handle_translation,
inputs=[audio_input, language_dropdown],
outputs=transcript_box
)
return demo
def main():
"""Launch the Gradio app with optimized settings"""
interface = create_translator_interface()
interface.launch(
share=False,
show_error=True,
debug=True # Helpful for development
)
if __name__ == "__main__":
main()