Spaces:
Sleeping
Sleeping
initial commit
Browse files- README.md +1 -1
- app.py +372 -0
- requirements.txt +81 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Reddit Search
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Reddit Search
|
3 |
+
emoji: π
|
4 |
colorFrom: purple
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
import time
|
4 |
+
from datetime import datetime
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
XAI_API_KEY = os.getenv("XAI_API_KEY")
|
12 |
+
|
13 |
+
# Global variable to store the most recent analysis results
|
14 |
+
GLOBAL_ANALYSIS_STORAGE = {
|
15 |
+
'subreddit': None,
|
16 |
+
'data': None
|
17 |
+
}
|
18 |
+
|
19 |
+
def call_LLM(query):
|
20 |
+
return call_groq(query)
|
21 |
+
|
22 |
+
def call_groq(query):
|
23 |
+
from groq import Groq
|
24 |
+
client = Groq()
|
25 |
+
chat_completion = client.chat.completions.create(
|
26 |
+
messages=[
|
27 |
+
{"role": "system", "content": query}
|
28 |
+
],
|
29 |
+
model="llama3-8b-8192",
|
30 |
+
temperature=0.5,
|
31 |
+
max_tokens=1024,
|
32 |
+
top_p=1,
|
33 |
+
stop=None,
|
34 |
+
stream=False,
|
35 |
+
)
|
36 |
+
|
37 |
+
return chat_completion.choices[0].message.content
|
38 |
+
|
39 |
+
def process(row):
|
40 |
+
"""
|
41 |
+
Format this so that the model sees full post for now
|
42 |
+
"""
|
43 |
+
# title
|
44 |
+
# comment_body
|
45 |
+
prompt = f"The below is a reddit post. Take a look and tell me if there is a business problem to be solved here ||| title: {row['post_title']} ||| comment: {row['comment_body']}"
|
46 |
+
return call_LLM(prompt)
|
47 |
+
|
48 |
+
# ... [Keep previous helper functions like extract_comment_data, fetch_top_comments, fetch_subreddits, fetch_top_posts] ...
|
49 |
+
|
50 |
+
def extract_comment_data(comment, post_info):
|
51 |
+
"""Extract relevant data from a comment"""
|
52 |
+
return {
|
53 |
+
'subreddit': post_info['subreddit'],
|
54 |
+
'post_title': post_info['title'],
|
55 |
+
'post_score': post_info['score'],
|
56 |
+
'post_created_utc': post_info['created_utc'],
|
57 |
+
'comment_id': comment['data'].get('id'),
|
58 |
+
'comment_author': comment['data'].get('author'),
|
59 |
+
'comment_body': comment['data'].get('body'),
|
60 |
+
'comment_score': comment['data'].get('score', 0),
|
61 |
+
'comment_created_utc': datetime.fromtimestamp(comment['data'].get('created_utc', 0)),
|
62 |
+
'post_url': post_info['url'],
|
63 |
+
'comment_url': f"https://www.reddit.com{post_info['permalink']}{comment['data'].get('id')}",
|
64 |
+
}
|
65 |
+
|
66 |
+
def fetch_top_comments(post_df, num_comments=2):
|
67 |
+
"""
|
68 |
+
Fetch top comments for each post in the dataframe, sorted by upvotes
|
69 |
+
"""
|
70 |
+
all_comments = []
|
71 |
+
total_posts = len(post_df)
|
72 |
+
headers = {
|
73 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
74 |
+
}
|
75 |
+
|
76 |
+
print(f"\nFetching top {num_comments} most upvoted comments for {total_posts} posts...")
|
77 |
+
|
78 |
+
for idx, post in post_df.iterrows():
|
79 |
+
print(f"\nProcessing post {idx + 1}/{total_posts}")
|
80 |
+
print(f"Title: {post['title'][:100]}...")
|
81 |
+
print(f"Post Score: {post['score']}, Number of Comments: {post['num_comments']}")
|
82 |
+
|
83 |
+
try:
|
84 |
+
json_url = post['permalink'].replace('https://www.reddit.com', '') + '.json'
|
85 |
+
url = f'https://www.reddit.com{json_url}'
|
86 |
+
|
87 |
+
response = requests.get(url, headers=headers)
|
88 |
+
response.raise_for_status()
|
89 |
+
data = response.json()
|
90 |
+
|
91 |
+
if len(data) > 1:
|
92 |
+
comments_data = data[1]['data']['children']
|
93 |
+
|
94 |
+
# Filter out non-comment entries and extract scores
|
95 |
+
valid_comments = [
|
96 |
+
comment for comment in comments_data
|
97 |
+
if comment['kind'] == 't1' and comment['data'].get('score') is not None
|
98 |
+
]
|
99 |
+
|
100 |
+
# Sort comments by score (upvotes) in descending order
|
101 |
+
sorted_comments = sorted(
|
102 |
+
valid_comments,
|
103 |
+
key=lambda x: x['data'].get('score', 0),
|
104 |
+
reverse=True
|
105 |
+
)
|
106 |
+
|
107 |
+
# Take only the top N comments
|
108 |
+
top_comments = sorted_comments[:num_comments]
|
109 |
+
|
110 |
+
# Print comment scores for verification
|
111 |
+
print("\nTop comment scores for this post:")
|
112 |
+
for i, comment in enumerate(top_comments, 1):
|
113 |
+
score = comment['data'].get('score', 0)
|
114 |
+
print(f"Comment {i}: {score} upvotes")
|
115 |
+
|
116 |
+
# Add to main list
|
117 |
+
for comment in top_comments:
|
118 |
+
all_comments.append(extract_comment_data(comment, post))
|
119 |
+
|
120 |
+
time.sleep(2)
|
121 |
+
|
122 |
+
except requests.exceptions.RequestException as e:
|
123 |
+
print(f"Error fetching comments for post {idx + 1}: {e}")
|
124 |
+
continue
|
125 |
+
|
126 |
+
# Create DataFrame and sort
|
127 |
+
comments_df = pd.DataFrame(all_comments)
|
128 |
+
|
129 |
+
if not comments_df.empty:
|
130 |
+
# Verify sorting by showing top comments for each post
|
131 |
+
print("\nVerification of comment sorting:")
|
132 |
+
for post_title in comments_df['post_title'].unique():
|
133 |
+
post_comments = comments_df[comments_df['post_title'] == post_title]
|
134 |
+
print(f"\nPost: {post_title[:100]}...")
|
135 |
+
print("Comment scores:", post_comments['comment_score'].tolist())
|
136 |
+
|
137 |
+
return comments_df
|
138 |
+
|
139 |
+
|
140 |
+
def fetch_subreddits(limit=10, min_subscribers=1000):
|
141 |
+
"""
|
142 |
+
Fetch subreddits from Reddit
|
143 |
+
|
144 |
+
Args:
|
145 |
+
limit (int): Number of subreddits to fetch
|
146 |
+
min_subscribers (int): Minimum number of subscribers required
|
147 |
+
"""
|
148 |
+
headers = {
|
149 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
150 |
+
}
|
151 |
+
subreddits_data = []
|
152 |
+
after = None
|
153 |
+
|
154 |
+
while len(subreddits_data) < limit:
|
155 |
+
try:
|
156 |
+
url = f'https://www.reddit.com/subreddits/popular.json?limit=100'
|
157 |
+
if after:
|
158 |
+
url += f'&after={after}'
|
159 |
+
|
160 |
+
print(f"Fetching subreddits... Current count: {len(subreddits_data)}")
|
161 |
+
response = requests.get(url, headers=headers)
|
162 |
+
response.raise_for_status()
|
163 |
+
data = response.json()
|
164 |
+
|
165 |
+
for subreddit in data['data']['children']:
|
166 |
+
subreddit_data = subreddit['data']
|
167 |
+
|
168 |
+
if subreddit_data.get('subscribers', 0) >= min_subscribers:
|
169 |
+
sub_info = {
|
170 |
+
'display_name': subreddit_data.get('display_name'),
|
171 |
+
'display_name_prefixed': subreddit_data.get('display_name_prefixed'),
|
172 |
+
'title': subreddit_data.get('title'),
|
173 |
+
'subscribers': subreddit_data.get('subscribers', 0),
|
174 |
+
'active_users': subreddit_data.get('active_user_count', 0),
|
175 |
+
'created_utc': datetime.fromtimestamp(subreddit_data.get('created_utc', 0)),
|
176 |
+
'description': subreddit_data.get('description'),
|
177 |
+
'subreddit_type': subreddit_data.get('subreddit_type'),
|
178 |
+
'over18': subreddit_data.get('over18', False),
|
179 |
+
'url': f"https://www.reddit.com/r/{subreddit_data.get('display_name')}/"
|
180 |
+
}
|
181 |
+
subreddits_data.append(sub_info)
|
182 |
+
|
183 |
+
after = data['data'].get('after')
|
184 |
+
if not after:
|
185 |
+
print("Reached end of listings")
|
186 |
+
break
|
187 |
+
|
188 |
+
time.sleep(2)
|
189 |
+
|
190 |
+
except requests.exceptions.RequestException as e:
|
191 |
+
print(f"Error fetching data: {e}")
|
192 |
+
break
|
193 |
+
|
194 |
+
return pd.DataFrame(subreddits_data)
|
195 |
+
|
196 |
+
def fetch_top_posts(subreddit, limit=5):
|
197 |
+
"""
|
198 |
+
Fetch top posts from a subreddit using Reddit's JSON API
|
199 |
+
|
200 |
+
Args:
|
201 |
+
subreddit (str): Name of the subreddit without the 'r/'
|
202 |
+
limit (int): Maximum number of posts to fetch
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
list: List of post dictionaries
|
206 |
+
"""
|
207 |
+
posts_data = []
|
208 |
+
url = f'https://www.reddit.com/r/{subreddit}/top.json?t=all&limit={limit}'
|
209 |
+
headers = {
|
210 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
211 |
+
}
|
212 |
+
|
213 |
+
try:
|
214 |
+
response = requests.get(url, headers=headers)
|
215 |
+
response.raise_for_status()
|
216 |
+
data = response.json()
|
217 |
+
|
218 |
+
for post in data['data']['children']:
|
219 |
+
post_data = post['data']
|
220 |
+
posts_data.append({
|
221 |
+
'subreddit': subreddit,
|
222 |
+
'title': post_data.get('title'),
|
223 |
+
'score': post_data.get('score'),
|
224 |
+
'num_comments': post_data.get('num_comments'),
|
225 |
+
'created_utc': datetime.fromtimestamp(post_data.get('created_utc', 0)),
|
226 |
+
'url': post_data.get('url'),
|
227 |
+
'permalink': 'https://www.reddit.com' + post_data.get('permalink', '')
|
228 |
+
})
|
229 |
+
|
230 |
+
time.sleep(2)
|
231 |
+
|
232 |
+
except requests.exceptions.RequestException as e:
|
233 |
+
print(f"Error fetching posts from r/{subreddit}: {e}")
|
234 |
+
|
235 |
+
return pd.DataFrame(posts_data)
|
236 |
+
|
237 |
+
|
238 |
+
def show_dataframe(subreddit):
|
239 |
+
# Fetch top posts
|
240 |
+
top_posts = fetch_top_posts(subreddit)
|
241 |
+
|
242 |
+
# Fetch top comments for these posts
|
243 |
+
data_to_analyze = fetch_top_comments(top_posts)
|
244 |
+
|
245 |
+
# Process and analyze each comment
|
246 |
+
responses = []
|
247 |
+
for _, row in data_to_analyze.iterrows():
|
248 |
+
print(f"{_} done")
|
249 |
+
responses.append(process(row))
|
250 |
+
|
251 |
+
# Add analysis to the dataframe
|
252 |
+
data_to_analyze['analysis'] = responses
|
253 |
+
|
254 |
+
# Store in global storage for quick access
|
255 |
+
GLOBAL_ANALYSIS_STORAGE['subreddit'] = subreddit
|
256 |
+
GLOBAL_ANALYSIS_STORAGE['data'] = data_to_analyze
|
257 |
+
|
258 |
+
return data_to_analyze
|
259 |
+
|
260 |
+
def launch_interface():
|
261 |
+
# Fetch list of subreddits for user to choose from
|
262 |
+
sub_reddits = fetch_subreddits()
|
263 |
+
subreddit_list = sub_reddits["display_name"].tolist()
|
264 |
+
|
265 |
+
# Create Gradio Blocks for more flexible interface
|
266 |
+
with gr.Blocks() as demo:
|
267 |
+
# Title and description
|
268 |
+
gr.Markdown("# Reddit Business Problem Analyzer")
|
269 |
+
gr.Markdown("Discover potential business opportunities from Reddit discussions")
|
270 |
+
|
271 |
+
# Subreddit selection
|
272 |
+
subreddit_dropdown = gr.Dropdown(
|
273 |
+
choices=subreddit_list,
|
274 |
+
label="Select Subreddit",
|
275 |
+
info="Choose a subreddit to analyze"
|
276 |
+
)
|
277 |
+
|
278 |
+
# Outputs
|
279 |
+
with gr.Row():
|
280 |
+
with gr.Column():
|
281 |
+
# Overall Analysis Section
|
282 |
+
gr.Markdown("## Overall Analysis")
|
283 |
+
# overall_analysis = gr.Textbox(
|
284 |
+
# label="Aggregated Business Insights",
|
285 |
+
# interactive=False,
|
286 |
+
# lines=5
|
287 |
+
# )
|
288 |
+
|
289 |
+
# Results Table
|
290 |
+
results_table = gr.Dataframe(
|
291 |
+
label="Analysis Results",
|
292 |
+
headers=["Index", "Post Title", "Comment", "Analysis"],
|
293 |
+
interactive=False
|
294 |
+
)
|
295 |
+
|
296 |
+
# Row Selection
|
297 |
+
row_index = gr.Number(
|
298 |
+
label="Select Row Index for Detailed View",
|
299 |
+
precision=0
|
300 |
+
)
|
301 |
+
|
302 |
+
with gr.Column():
|
303 |
+
# Detailed Post Analysis
|
304 |
+
gr.Markdown("## Detailed Post Analysis")
|
305 |
+
detailed_analysis = gr.Markdown(
|
306 |
+
label="Detailed Insights"
|
307 |
+
)
|
308 |
+
|
309 |
+
# Function to update posts when subreddit is selected
|
310 |
+
def update_posts(subreddit):
|
311 |
+
# Fetch and analyze data
|
312 |
+
data_to_analyze = show_dataframe(subreddit)
|
313 |
+
|
314 |
+
# Prepare table data
|
315 |
+
table_data = data_to_analyze[['post_title', 'comment_body', 'analysis']].reset_index()
|
316 |
+
table_data.columns = ['Index', 'Post Title', 'Comment', 'Analysis']
|
317 |
+
|
318 |
+
return table_data, None
|
319 |
+
|
320 |
+
# Function to show detailed analysis for a specific row
|
321 |
+
def show_row_details(row_index):
|
322 |
+
# Ensure we have data loaded
|
323 |
+
if GLOBAL_ANALYSIS_STORAGE['data'] is None:
|
324 |
+
return "Please select a subreddit first."
|
325 |
+
|
326 |
+
try:
|
327 |
+
# Convert to integer and subtract 1 (since index is 0-based)
|
328 |
+
row_index = int(row_index)
|
329 |
+
|
330 |
+
# Retrieve the specific row
|
331 |
+
row_data = GLOBAL_ANALYSIS_STORAGE['data'].loc[row_index]
|
332 |
+
|
333 |
+
# Format detailed view
|
334 |
+
detailed_view = f"""
|
335 |
+
### Post Details
|
336 |
+
**Title:** {row_data.get('post_title', 'N/A')}
|
337 |
+
|
338 |
+
**Comment:** {row_data.get('comment_body', 'N/A')}
|
339 |
+
|
340 |
+
**Comment Score:** {row_data.get('comment_score', 'N/A')}
|
341 |
+
|
342 |
+
**Analysis:** {row_data.get('analysis', 'No analysis available')}
|
343 |
+
|
344 |
+
**Post URL:** {row_data.get('post_url', 'N/A')}
|
345 |
+
|
346 |
+
**Comment URL:** {row_data.get('comment_url', 'N/A')}
|
347 |
+
"""
|
348 |
+
|
349 |
+
return detailed_view
|
350 |
+
|
351 |
+
except (KeyError, ValueError, TypeError) as e:
|
352 |
+
return f"Error retrieving row details: {str(e)}"
|
353 |
+
|
354 |
+
# Event Listeners
|
355 |
+
subreddit_dropdown.change(
|
356 |
+
fn=update_posts,
|
357 |
+
inputs=subreddit_dropdown,
|
358 |
+
outputs=[results_table, detailed_analysis]
|
359 |
+
)
|
360 |
+
|
361 |
+
row_index.change(
|
362 |
+
fn=show_row_details,
|
363 |
+
inputs=row_index,
|
364 |
+
outputs=detailed_analysis
|
365 |
+
)
|
366 |
+
|
367 |
+
return demo
|
368 |
+
|
369 |
+
# Launch the interface
|
370 |
+
if __name__ == "__main__":
|
371 |
+
interface = launch_interface()
|
372 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.6.2.post1
|
4 |
+
appnope==0.1.4
|
5 |
+
asttokens==2.4.1
|
6 |
+
audioop-lts==0.2.1
|
7 |
+
certifi==2024.8.30
|
8 |
+
charset-normalizer==3.4.0
|
9 |
+
click==8.1.7
|
10 |
+
comm==0.2.2
|
11 |
+
debugpy==1.8.7
|
12 |
+
decorator==5.1.1
|
13 |
+
distro==1.9.0
|
14 |
+
executing==2.1.0
|
15 |
+
fastapi==0.115.4
|
16 |
+
ffmpy==0.4.0
|
17 |
+
filelock==3.16.1
|
18 |
+
fsspec==2024.10.0
|
19 |
+
gradio==5.4.0
|
20 |
+
gradio_client==1.4.2
|
21 |
+
groq==0.13.0
|
22 |
+
h11==0.14.0
|
23 |
+
httpcore==1.0.6
|
24 |
+
httpx==0.27.2
|
25 |
+
huggingface-hub==0.26.2
|
26 |
+
idna==3.10
|
27 |
+
ipykernel==6.29.5
|
28 |
+
ipython==8.29.0
|
29 |
+
jedi==0.19.1
|
30 |
+
Jinja2==3.1.4
|
31 |
+
jupyter_client==8.6.3
|
32 |
+
jupyter_core==5.7.2
|
33 |
+
markdown-it-py==3.0.0
|
34 |
+
MarkupSafe==2.1.5
|
35 |
+
matplotlib-inline==0.1.7
|
36 |
+
mdurl==0.1.2
|
37 |
+
nest-asyncio==1.6.0
|
38 |
+
numpy==2.1.2
|
39 |
+
ollama==0.3.3
|
40 |
+
orjson==3.10.10
|
41 |
+
packaging==24.1
|
42 |
+
pandas==2.2.3
|
43 |
+
parso==0.8.4
|
44 |
+
pexpect==4.9.0
|
45 |
+
pillow==11.0.0
|
46 |
+
platformdirs==4.3.6
|
47 |
+
prompt_toolkit==3.0.48
|
48 |
+
psutil==6.1.0
|
49 |
+
ptyprocess==0.7.0
|
50 |
+
pure_eval==0.2.3
|
51 |
+
pydantic==2.9.2
|
52 |
+
pydantic_core==2.23.4
|
53 |
+
pydub==0.25.1
|
54 |
+
Pygments==2.18.0
|
55 |
+
python-dateutil==2.9.0.post0
|
56 |
+
python-dotenv==1.0.1
|
57 |
+
python-multipart==0.0.12
|
58 |
+
pytz==2024.2
|
59 |
+
PyYAML==6.0.2
|
60 |
+
pyzmq==26.2.0
|
61 |
+
requests==2.32.3
|
62 |
+
rich==13.9.4
|
63 |
+
ruff==0.7.2
|
64 |
+
safehttpx==0.1.1
|
65 |
+
semantic-version==2.10.0
|
66 |
+
shellingham==1.5.4
|
67 |
+
six==1.16.0
|
68 |
+
sniffio==1.3.1
|
69 |
+
stack-data==0.6.3
|
70 |
+
starlette==0.41.2
|
71 |
+
tomlkit==0.12.0
|
72 |
+
tornado==6.4.1
|
73 |
+
tqdm==4.66.6
|
74 |
+
traitlets==5.14.3
|
75 |
+
typer==0.12.5
|
76 |
+
typing_extensions==4.12.2
|
77 |
+
tzdata==2024.2
|
78 |
+
urllib3==2.2.3
|
79 |
+
uvicorn==0.32.0
|
80 |
+
wcwidth==0.2.13
|
81 |
+
websockets==12.0
|