Spaces:
Sleeping
Sleeping
fixing user agent + local data
Browse files- .gitignore +4 -1
- app.py +7 -192
- comments.csv +0 -0
- save.py +201 -0
- subreddits.csv +0 -0
.gitignore
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
.env
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
__pycache__/*
|
3 |
+
.gradio/*
|
4 |
+
venv/
|
app.py
CHANGED
@@ -45,202 +45,17 @@ def process(row):
|
|
45 |
prompt = f"The below is a reddit post. Take a look and tell me if there is a business problem to be solved here ||| title: {row['post_title']} ||| comment: {row['comment_body']}"
|
46 |
return call_LLM(prompt)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
return {
|
53 |
-
'subreddit': post_info['subreddit'],
|
54 |
-
'post_title': post_info['title'],
|
55 |
-
'post_score': post_info['score'],
|
56 |
-
'post_created_utc': post_info['created_utc'],
|
57 |
-
'comment_id': comment['data'].get('id'),
|
58 |
-
'comment_author': comment['data'].get('author'),
|
59 |
-
'comment_body': comment['data'].get('body'),
|
60 |
-
'comment_score': comment['data'].get('score', 0),
|
61 |
-
'comment_created_utc': datetime.fromtimestamp(comment['data'].get('created_utc', 0)),
|
62 |
-
'post_url': post_info['url'],
|
63 |
-
'comment_url': f"https://www.reddit.com{post_info['permalink']}{comment['data'].get('id')}",
|
64 |
-
}
|
65 |
-
|
66 |
-
def fetch_top_comments(post_df, num_comments=2):
|
67 |
-
"""
|
68 |
-
Fetch top comments for each post in the dataframe, sorted by upvotes
|
69 |
-
"""
|
70 |
-
all_comments = []
|
71 |
-
total_posts = len(post_df)
|
72 |
-
headers = {
|
73 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
74 |
-
}
|
75 |
-
|
76 |
-
print(f"\nFetching top {num_comments} most upvoted comments for {total_posts} posts...")
|
77 |
-
|
78 |
-
for idx, post in post_df.iterrows():
|
79 |
-
print(f"\nProcessing post {idx + 1}/{total_posts}")
|
80 |
-
print(f"Title: {post['title'][:100]}...")
|
81 |
-
print(f"Post Score: {post['score']}, Number of Comments: {post['num_comments']}")
|
82 |
-
|
83 |
-
try:
|
84 |
-
json_url = post['permalink'].replace('https://www.reddit.com', '') + '.json'
|
85 |
-
url = f'https://www.reddit.com{json_url}'
|
86 |
-
|
87 |
-
response = requests.get(url, headers=headers)
|
88 |
-
response.raise_for_status()
|
89 |
-
data = response.json()
|
90 |
-
|
91 |
-
if len(data) > 1:
|
92 |
-
comments_data = data[1]['data']['children']
|
93 |
-
|
94 |
-
# Filter out non-comment entries and extract scores
|
95 |
-
valid_comments = [
|
96 |
-
comment for comment in comments_data
|
97 |
-
if comment['kind'] == 't1' and comment['data'].get('score') is not None
|
98 |
-
]
|
99 |
-
|
100 |
-
# Sort comments by score (upvotes) in descending order
|
101 |
-
sorted_comments = sorted(
|
102 |
-
valid_comments,
|
103 |
-
key=lambda x: x['data'].get('score', 0),
|
104 |
-
reverse=True
|
105 |
-
)
|
106 |
-
|
107 |
-
# Take only the top N comments
|
108 |
-
top_comments = sorted_comments[:num_comments]
|
109 |
-
|
110 |
-
# Print comment scores for verification
|
111 |
-
print("\nTop comment scores for this post:")
|
112 |
-
for i, comment in enumerate(top_comments, 1):
|
113 |
-
score = comment['data'].get('score', 0)
|
114 |
-
print(f"Comment {i}: {score} upvotes")
|
115 |
-
|
116 |
-
# Add to main list
|
117 |
-
for comment in top_comments:
|
118 |
-
all_comments.append(extract_comment_data(comment, post))
|
119 |
-
|
120 |
-
time.sleep(2)
|
121 |
-
|
122 |
-
except requests.exceptions.RequestException as e:
|
123 |
-
print(f"Error fetching comments for post {idx + 1}: {e}")
|
124 |
-
continue
|
125 |
-
|
126 |
-
# Create DataFrame and sort
|
127 |
-
comments_df = pd.DataFrame(all_comments)
|
128 |
-
|
129 |
-
if not comments_df.empty:
|
130 |
-
# Verify sorting by showing top comments for each post
|
131 |
-
print("\nVerification of comment sorting:")
|
132 |
-
for post_title in comments_df['post_title'].unique():
|
133 |
-
post_comments = comments_df[comments_df['post_title'] == post_title]
|
134 |
-
print(f"\nPost: {post_title[:100]}...")
|
135 |
-
print("Comment scores:", post_comments['comment_score'].tolist())
|
136 |
-
|
137 |
-
return comments_df
|
138 |
-
|
139 |
-
|
140 |
-
def fetch_subreddits(limit=10, min_subscribers=1000):
|
141 |
-
"""
|
142 |
-
Fetch subreddits from Reddit
|
143 |
-
|
144 |
-
Args:
|
145 |
-
limit (int): Number of subreddits to fetch
|
146 |
-
min_subscribers (int): Minimum number of subscribers required
|
147 |
-
"""
|
148 |
-
headers = {
|
149 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
150 |
-
}
|
151 |
-
subreddits_data = []
|
152 |
-
after = None
|
153 |
-
|
154 |
-
while len(subreddits_data) < limit:
|
155 |
-
try:
|
156 |
-
url = f'https://www.reddit.com/subreddits/popular.json?limit=100'
|
157 |
-
if after:
|
158 |
-
url += f'&after={after}'
|
159 |
-
|
160 |
-
print(f"Fetching subreddits... Current count: {len(subreddits_data)}")
|
161 |
-
response = requests.get(url, headers=headers)
|
162 |
-
response.raise_for_status()
|
163 |
-
data = response.json()
|
164 |
-
|
165 |
-
for subreddit in data['data']['children']:
|
166 |
-
subreddit_data = subreddit['data']
|
167 |
-
|
168 |
-
if subreddit_data.get('subscribers', 0) >= min_subscribers:
|
169 |
-
sub_info = {
|
170 |
-
'display_name': subreddit_data.get('display_name'),
|
171 |
-
'display_name_prefixed': subreddit_data.get('display_name_prefixed'),
|
172 |
-
'title': subreddit_data.get('title'),
|
173 |
-
'subscribers': subreddit_data.get('subscribers', 0),
|
174 |
-
'active_users': subreddit_data.get('active_user_count', 0),
|
175 |
-
'created_utc': datetime.fromtimestamp(subreddit_data.get('created_utc', 0)),
|
176 |
-
'description': subreddit_data.get('description'),
|
177 |
-
'subreddit_type': subreddit_data.get('subreddit_type'),
|
178 |
-
'over18': subreddit_data.get('over18', False),
|
179 |
-
'url': f"https://www.reddit.com/r/{subreddit_data.get('display_name')}/"
|
180 |
-
}
|
181 |
-
subreddits_data.append(sub_info)
|
182 |
-
|
183 |
-
after = data['data'].get('after')
|
184 |
-
if not after:
|
185 |
-
print("Reached end of listings")
|
186 |
-
break
|
187 |
-
|
188 |
-
time.sleep(2)
|
189 |
-
|
190 |
-
except requests.exceptions.RequestException as e:
|
191 |
-
print(f"Error fetching data: {e}")
|
192 |
-
break
|
193 |
-
|
194 |
-
return pd.DataFrame(subreddits_data)
|
195 |
-
|
196 |
-
def fetch_top_posts(subreddit, limit=5):
|
197 |
-
"""
|
198 |
-
Fetch top posts from a subreddit using Reddit's JSON API
|
199 |
-
|
200 |
-
Args:
|
201 |
-
subreddit (str): Name of the subreddit without the 'r/'
|
202 |
-
limit (int): Maximum number of posts to fetch
|
203 |
-
|
204 |
-
Returns:
|
205 |
-
list: List of post dictionaries
|
206 |
-
"""
|
207 |
-
posts_data = []
|
208 |
-
url = f'https://www.reddit.com/r/{subreddit}/top.json?t=all&limit={limit}'
|
209 |
-
headers = {
|
210 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
211 |
-
}
|
212 |
-
|
213 |
-
try:
|
214 |
-
response = requests.get(url, headers=headers)
|
215 |
-
response.raise_for_status()
|
216 |
-
data = response.json()
|
217 |
-
|
218 |
-
for post in data['data']['children']:
|
219 |
-
post_data = post['data']
|
220 |
-
posts_data.append({
|
221 |
-
'subreddit': subreddit,
|
222 |
-
'title': post_data.get('title'),
|
223 |
-
'score': post_data.get('score'),
|
224 |
-
'num_comments': post_data.get('num_comments'),
|
225 |
-
'created_utc': datetime.fromtimestamp(post_data.get('created_utc', 0)),
|
226 |
-
'url': post_data.get('url'),
|
227 |
-
'permalink': 'https://www.reddit.com' + post_data.get('permalink', '')
|
228 |
-
})
|
229 |
-
|
230 |
-
time.sleep(2)
|
231 |
-
|
232 |
-
except requests.exceptions.RequestException as e:
|
233 |
-
print(f"Error fetching posts from r/{subreddit}: {e}")
|
234 |
-
|
235 |
-
return pd.DataFrame(posts_data)
|
236 |
|
|
|
|
|
237 |
|
238 |
def show_dataframe(subreddit):
|
239 |
-
# Fetch top posts
|
240 |
-
top_posts = fetch_top_posts(subreddit)
|
241 |
-
|
242 |
# Fetch top comments for these posts
|
243 |
-
data_to_analyze = fetch_top_comments(
|
244 |
|
245 |
# Process and analyze each comment
|
246 |
responses = []
|
|
|
45 |
prompt = f"The below is a reddit post. Take a look and tell me if there is a business problem to be solved here ||| title: {row['post_title']} ||| comment: {row['comment_body']}"
|
46 |
return call_LLM(prompt)
|
47 |
|
48 |
+
def fetch_top_comments(subreddit):
|
49 |
+
df = pd.read_csv('comments.csv')
|
50 |
+
filtered_df = df[df['subreddit'] == subreddit]
|
51 |
+
return filtered_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
def fetch_subreddits():
|
54 |
+
return pd.read_csv('subreddits.csv')
|
55 |
|
56 |
def show_dataframe(subreddit):
|
|
|
|
|
|
|
57 |
# Fetch top comments for these posts
|
58 |
+
data_to_analyze = fetch_top_comments(subreddit)
|
59 |
|
60 |
# Process and analyze each comment
|
61 |
responses = []
|
comments.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
save.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
def extract_comment_data(comment, post_info):
|
7 |
+
return {
|
8 |
+
'subreddit': post_info['subreddit'],
|
9 |
+
'post_title': post_info['title'],
|
10 |
+
'post_score': post_info['score'],
|
11 |
+
'post_created_utc': post_info['created_utc'],
|
12 |
+
'comment_id': comment['data'].get('id'),
|
13 |
+
'comment_author': comment['data'].get('author'),
|
14 |
+
'comment_body': comment['data'].get('body'),
|
15 |
+
'comment_score': comment['data'].get('score', 0),
|
16 |
+
'comment_created_utc': datetime.fromtimestamp(comment['data'].get('created_utc', 0)),
|
17 |
+
'post_url': post_info['url'],
|
18 |
+
'comment_url': f"https://www.reddit.com{post_info['permalink']}{comment['data'].get('id')}",
|
19 |
+
}
|
20 |
+
|
21 |
+
def fetch_top_comments(post_df, num_comments=2):
|
22 |
+
all_comments = []
|
23 |
+
total_posts = len(post_df)
|
24 |
+
headers = {
|
25 |
+
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1'
|
26 |
+
}
|
27 |
+
|
28 |
+
print(f"\nFetching top {num_comments} most upvoted comments for {total_posts} posts...")
|
29 |
+
|
30 |
+
for idx, post in post_df.iterrows():
|
31 |
+
print(f"\nProcessing post {idx + 1}/{total_posts}")
|
32 |
+
print(f"Title: {post['title'][:100]}...")
|
33 |
+
print(f"Post Score: {post['score']}, Number of Comments: {post['num_comments']}")
|
34 |
+
|
35 |
+
try:
|
36 |
+
json_url = post['permalink'].replace('https://www.reddit.com', '') + '.json'
|
37 |
+
url = f'https://www.reddit.com{json_url}'
|
38 |
+
|
39 |
+
response = requests.get(url, headers=headers)
|
40 |
+
response.raise_for_status()
|
41 |
+
data = response.json()
|
42 |
+
|
43 |
+
if len(data) > 1:
|
44 |
+
comments_data = data[1]['data']['children']
|
45 |
+
|
46 |
+
# Filter out non-comment entries and extract scores
|
47 |
+
valid_comments = [
|
48 |
+
comment for comment in comments_data
|
49 |
+
if comment['kind'] == 't1' and comment['data'].get('score') is not None
|
50 |
+
]
|
51 |
+
|
52 |
+
# Sort comments by score (upvotes) in descending order
|
53 |
+
sorted_comments = sorted(
|
54 |
+
valid_comments,
|
55 |
+
key=lambda x: x['data'].get('score', 0),
|
56 |
+
reverse=True
|
57 |
+
)
|
58 |
+
|
59 |
+
# Take only the top N comments
|
60 |
+
top_comments = sorted_comments[:num_comments]
|
61 |
+
|
62 |
+
# Print comment scores for verification
|
63 |
+
print("\nTop comment scores for this post:")
|
64 |
+
for i, comment in enumerate(top_comments, 1):
|
65 |
+
score = comment['data'].get('score', 0)
|
66 |
+
print(f"Comment {i}: {score} upvotes")
|
67 |
+
|
68 |
+
# Add to main list
|
69 |
+
for comment in top_comments:
|
70 |
+
all_comments.append(extract_comment_data(comment, post))
|
71 |
+
|
72 |
+
time.sleep(20)
|
73 |
+
|
74 |
+
except requests.exceptions.RequestException as e:
|
75 |
+
print(f"Error fetching comments for post {idx + 1}: {e}")
|
76 |
+
continue
|
77 |
+
|
78 |
+
# Create DataFrame and sort
|
79 |
+
comments_df = pd.DataFrame(all_comments)
|
80 |
+
|
81 |
+
if not comments_df.empty:
|
82 |
+
# Verify sorting by showing top comments for each post
|
83 |
+
print("\nVerification of comment sorting:")
|
84 |
+
for post_title in comments_df['post_title'].unique():
|
85 |
+
post_comments = comments_df[comments_df['post_title'] == post_title]
|
86 |
+
print(f"\nPost: {post_title[:100]}...")
|
87 |
+
print("Comment scores:", post_comments['comment_score'].tolist())
|
88 |
+
|
89 |
+
return comments_df
|
90 |
+
|
91 |
+
|
92 |
+
def fetch_subreddits(limit=10, min_subscribers=1000):
|
93 |
+
headers = {
|
94 |
+
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1'
|
95 |
+
}
|
96 |
+
subreddits_data = []
|
97 |
+
after = None
|
98 |
+
|
99 |
+
while len(subreddits_data) < limit:
|
100 |
+
try:
|
101 |
+
url = f'https://www.reddit.com/subreddits/popular.json?limit=100'
|
102 |
+
if after:
|
103 |
+
url += f'&after={after}'
|
104 |
+
|
105 |
+
print(f"Fetching subreddits... Current count: {len(subreddits_data)}")
|
106 |
+
response = requests.get(url, headers=headers)
|
107 |
+
response.raise_for_status()
|
108 |
+
data = response.json()
|
109 |
+
|
110 |
+
for subreddit in data['data']['children']:
|
111 |
+
subreddit_data = subreddit['data']
|
112 |
+
|
113 |
+
if subreddit_data.get('subscribers', 0) >= min_subscribers:
|
114 |
+
sub_info = {
|
115 |
+
'display_name': subreddit_data.get('display_name'),
|
116 |
+
'display_name_prefixed': subreddit_data.get('display_name_prefixed'),
|
117 |
+
'title': subreddit_data.get('title'),
|
118 |
+
'subscribers': subreddit_data.get('subscribers', 0),
|
119 |
+
'active_users': subreddit_data.get('active_user_count', 0),
|
120 |
+
'created_utc': datetime.fromtimestamp(subreddit_data.get('created_utc', 0)),
|
121 |
+
'description': subreddit_data.get('description'),
|
122 |
+
'subreddit_type': subreddit_data.get('subreddit_type'),
|
123 |
+
'over18': subreddit_data.get('over18', False),
|
124 |
+
'url': f"https://www.reddit.com/r/{subreddit_data.get('display_name')}/"
|
125 |
+
}
|
126 |
+
subreddits_data.append(sub_info)
|
127 |
+
|
128 |
+
after = data['data'].get('after')
|
129 |
+
if not after:
|
130 |
+
print("Reached end of listings")
|
131 |
+
break
|
132 |
+
|
133 |
+
time.sleep(2)
|
134 |
+
|
135 |
+
except requests.exceptions.RequestException as e:
|
136 |
+
print(f"Error fetching data: {e}")
|
137 |
+
break
|
138 |
+
|
139 |
+
return pd.DataFrame(subreddits_data)
|
140 |
+
|
141 |
+
def fetch_top_posts(subreddit, limit=5):
|
142 |
+
posts_data = []
|
143 |
+
url = f'https://www.reddit.com/r/{subreddit}/top.json?t=all&limit={limit}'
|
144 |
+
headers = {
|
145 |
+
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1'
|
146 |
+
}
|
147 |
+
|
148 |
+
try:
|
149 |
+
response = requests.get(url, headers=headers)
|
150 |
+
response.raise_for_status()
|
151 |
+
data = response.json()
|
152 |
+
|
153 |
+
for post in data['data']['children']:
|
154 |
+
post_data = post['data']
|
155 |
+
posts_data.append({
|
156 |
+
'subreddit': subreddit,
|
157 |
+
'title': post_data.get('title'),
|
158 |
+
'score': post_data.get('score'),
|
159 |
+
'num_comments': post_data.get('num_comments'),
|
160 |
+
'created_utc': datetime.fromtimestamp(post_data.get('created_utc', 0)),
|
161 |
+
'url': post_data.get('url'),
|
162 |
+
'permalink': 'https://www.reddit.com' + post_data.get('permalink', '')
|
163 |
+
})
|
164 |
+
|
165 |
+
time.sleep(2)
|
166 |
+
|
167 |
+
except requests.exceptions.RequestException as e:
|
168 |
+
print(f"Error fetching posts from r/{subreddit}: {e}")
|
169 |
+
|
170 |
+
return pd.DataFrame(posts_data)
|
171 |
+
|
172 |
+
def main():
|
173 |
+
# Step 1: Fetch Subreddits
|
174 |
+
print("Fetching subreddits...")
|
175 |
+
subreddits_df = fetch_subreddits(limit=10, min_subscribers=1000)
|
176 |
+
print(f"Fetched {len(subreddits_df)} subreddits.")
|
177 |
+
subreddits_df.to_csv("subreddits.csv")
|
178 |
+
|
179 |
+
# # Step 2: Fetch Top Posts for each subreddit
|
180 |
+
all_posts_data = []
|
181 |
+
for subreddit in subreddits_df['display_name']:
|
182 |
+
print(f"\nFetching top posts for subreddit: {subreddit}...")
|
183 |
+
posts_df = fetch_top_posts(subreddit, limit=5)
|
184 |
+
all_posts_data.append(posts_df)
|
185 |
+
|
186 |
+
# Combine all posts into a single DataFrame
|
187 |
+
posts_df = pd.concat(all_posts_data, ignore_index=True)
|
188 |
+
print(f"Fetched {len(posts_df)} top posts.")
|
189 |
+
posts_df.to_csv("posts.csv")
|
190 |
+
|
191 |
+
posts_df = pd.read_csv("posts.csv")
|
192 |
+
|
193 |
+
# Step 3: Fetch Top Comments for each post
|
194 |
+
all_comments_data = []
|
195 |
+
if not posts_df.empty:
|
196 |
+
all_comments_data = fetch_top_comments(posts_df, num_comments=2)
|
197 |
+
print(f"Fetched {len(all_comments_data)} top comments.")
|
198 |
+
all_comments_data.to_csv("comments.csv")
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|
subreddits.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|