|
import gradio as gr |
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import open3d as o3d |
|
from pathlib import Path |
|
import os |
|
|
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") |
|
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") |
|
|
|
|
|
def process_image(image_path): |
|
image_path = Path(image_path) |
|
image_raw = Image.open(image_path) |
|
image = image_raw.resize( |
|
(800, int(800 * image_raw.size[1] / image_raw.size[0])), |
|
Image.Resampling.LANCZOS) |
|
|
|
|
|
encoding = feature_extractor(image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**encoding) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=image.size[::-1], |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
output = prediction.cpu().numpy() |
|
depth_image = (output * 255 / np.max(output)).astype('uint8') |
|
try: |
|
gltf_path = create_3d_obj(np.array(image), depth_image, image_path) |
|
img = Image.fromarray(depth_image) |
|
return [img, gltf_path, gltf_path] |
|
except Exception as e: |
|
gltf_path = create_3d_obj( |
|
np.array(image), depth_image, image_path, depth=8) |
|
img = Image.fromarray(depth_image) |
|
return [img, gltf_path, gltf_path] |
|
except: |
|
print("Error reconstructing 3D model") |
|
raise Exception("Error reconstructing 3D model") |
|
|
|
|
|
def create_3d_obj(rgb_image, depth_image, image_path, depth=10): |
|
depth_o3d = o3d.geometry.Image(depth_image) |
|
image_o3d = o3d.geometry.Image(rgb_image) |
|
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( |
|
image_o3d, depth_o3d, convert_rgb_to_intensity=False) |
|
w = int(depth_image.shape[1]) |
|
h = int(depth_image.shape[0]) |
|
|
|
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() |
|
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2) |
|
|
|
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( |
|
rgbd_image, camera_intrinsic) |
|
|
|
print('normals') |
|
pcd.normals = o3d.utility.Vector3dVector( |
|
np.zeros((1, 3))) |
|
pcd.estimate_normals( |
|
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) |
|
pcd.orient_normals_towards_camera_location( |
|
camera_location=np.array([0., 0., 1000.])) |
|
pcd.transform([[1, 0, 0, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, -1, 0], |
|
[0, 0, 0, 1]]) |
|
pcd.transform([[-1, 0, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
print('run Poisson surface reconstruction') |
|
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: |
|
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( |
|
pcd, depth=depth, width=0, scale=1.1, linear_fit=True) |
|
|
|
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256 |
|
print(f'voxel_size = {voxel_size:e}') |
|
mesh = mesh_raw.simplify_vertex_clustering( |
|
voxel_size=voxel_size, |
|
contraction=o3d.geometry.SimplificationContraction.Average) |
|
|
|
|
|
|
|
bbox = pcd.get_axis_aligned_bounding_box() |
|
mesh_crop = mesh.crop(bbox) |
|
gltf_path = f'./{image_path.stem}.gltf' |
|
o3d.io.write_triangle_mesh( |
|
gltf_path, mesh_crop, write_triangle_uvs=True) |
|
return gltf_path |
|
|
|
|
|
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud" |
|
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object." |
|
examples = [["examples/" + img] for img in os.listdir("examples/")] |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=[gr.Image( |
|
type="filepath", label="Input Image")], |
|
outputs=[gr.Image(label="predicted depth", type="pil"), |
|
gr.Model3D(label="3d mesh reconstruction", clear_color=[ |
|
1.0, 1.0, 1.0, 1.0]), |
|
gr.File(label="3d gLTF")], |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
allow_flagging="never", |
|
cache_examples=False) |
|
iface.launch(debug=True, enable_queue=False) |
|
|