Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 5.13.
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 5.13.1
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
requirements.txt
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-pypi-previews.s3.amazonaws.com/
|
3 |
-
diffusers
|
4 |
-
|
5 |
-
|
6 |
-
ftfy
|
7 |
-
torch
|
8 |
-
Pillow
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@f40747c9fd12d160ac9f7b3c5273be6be815efac#subdirectory=client/python
|
2 |
+
https://gradio-pypi-previews.s3.amazonaws.com/f40747c9fd12d160ac9f7b3c5273be6be815efac/gradio-5.13.1-py3-none-any.whl
|
3 |
+
diffusers==0.32.2
|
4 |
+
torch==2.5.1
|
5 |
+
|
|
|
|
|
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stable-diffusion\n", "### Note: This is a simplified version of the code needed to create the Stable Diffusion demo. See full code here: https://hf.co/spaces/stabilityai/stable-diffusion/tree/main\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio diffusers
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stable-diffusion\n", "### Note: This is a simplified version of the code needed to create the Stable Diffusion demo. See full code here: https://hf.co/spaces/stabilityai/stable-diffusion/tree/main\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio diffusers==0.32.2 torch==2.5.1 "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "from diffusers import StableDiffusionPipeline # type: ignore\n", "from PIL import Image\n", "import os\n", "\n", "auth_token = os.getenv(\"HF_TOKEN\")\n", "if not auth_token:\n", " print(\n", " \"ERROR: No Hugging Face access token found.\\n\"\n", " \"Please define an environment variable 'auth_token' before running.\\n\"\n", " \"Example:\\n\"\n", " \" export HF_TOKEN=XXXXXXXX\\n\"\n", " )\n", "\n", "model_id = \"CompVis/stable-diffusion-v1-4\"\n", "device = \"cpu\"\n", "pipe = StableDiffusionPipeline.from_pretrained(\n", " model_id, token=auth_token, variant=\"fp16\", torch_dtype=torch.float16,\n", ")\n", "pipe = pipe.to(device)\n", "\n", "\n", "def infer(prompt, samples, steps, scale, seed):\n", " generator = torch.Generator(device=device).manual_seed(seed)\n", " images_list = pipe( # type: ignore\n", " [prompt] * samples,\n", " num_inference_steps=steps,\n", " guidance_scale=scale,\n", " generator=generator,\n", " )\n", " images = []\n", " safe_image = Image.open(r\"unsafe.png\")\n", " for i, image in enumerate(images_list[\"sample\"]): # type: ignore\n", " if images_list[\"nsfw_content_detected\"][i]: # type: ignore\n", " images.append(safe_image)\n", " else:\n", " images.append(image)\n", " return images\n", "\n", "\n", "block = gr.Blocks()\n", "\n", "with block:\n", " with gr.Group():\n", " with gr.Row():\n", " text = gr.Textbox(\n", " label=\"Enter your prompt\",\n", " max_lines=1,\n", " placeholder=\"Enter your prompt\",\n", " container=False,\n", " )\n", " btn = gr.Button(\"Generate image\")\n", " gallery = gr.Gallery(\n", " label=\"Generated images\",\n", " show_label=False,\n", " elem_id=\"gallery\",\n", " columns=[2],\n", " )\n", "\n", " advanced_button = gr.Button(\"Advanced options\", elem_id=\"advanced-btn\")\n", "\n", " with gr.Row(elem_id=\"advanced-options\"):\n", " samples = gr.Slider(label=\"Images\", minimum=1, maximum=4, value=4, step=1)\n", " steps = gr.Slider(label=\"Steps\", minimum=1, maximum=50, value=45, step=1)\n", " scale = gr.Slider(\n", " label=\"Guidance Scale\", minimum=0, maximum=50, value=7.5, step=0.1\n", " )\n", " seed = gr.Slider(\n", " label=\"Seed\",\n", " minimum=0,\n", " maximum=2147483647,\n", " step=1,\n", " randomize=True,\n", " )\n", " gr.on(\n", " [text.submit, btn.click],\n", " infer,\n", " inputs=[text, samples, steps, scale, seed],\n", " outputs=gallery,\n", " )\n", " advanced_button.click(\n", " None,\n", " [],\n", " text,\n", " )\n", "\n", "block.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -4,14 +4,23 @@ from diffusers import StableDiffusionPipeline # type: ignore
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
-
auth_token = os.getenv("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model_id = "CompVis/stable-diffusion-v1-4"
|
9 |
device = "cpu"
|
10 |
pipe = StableDiffusionPipeline.from_pretrained(
|
11 |
-
model_id,
|
12 |
)
|
13 |
pipe = pipe.to(device)
|
14 |
|
|
|
15 |
def infer(prompt, samples, steps, scale, seed):
|
16 |
generator = torch.Generator(device=device).manual_seed(seed)
|
17 |
images_list = pipe( # type: ignore
|
@@ -29,6 +38,7 @@ def infer(prompt, samples, steps, scale, seed):
|
|
29 |
images.append(image)
|
30 |
return images
|
31 |
|
|
|
32 |
block = gr.Blocks()
|
33 |
|
34 |
with block:
|
@@ -63,7 +73,12 @@ with block:
|
|
63 |
step=1,
|
64 |
randomize=True,
|
65 |
)
|
66 |
-
gr.on(
|
|
|
|
|
|
|
|
|
|
|
67 |
advanced_button.click(
|
68 |
None,
|
69 |
[],
|
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
+
auth_token = os.getenv("HF_TOKEN")
|
8 |
+
if not auth_token:
|
9 |
+
print(
|
10 |
+
"ERROR: No Hugging Face access token found.\n"
|
11 |
+
"Please define an environment variable 'auth_token' before running.\n"
|
12 |
+
"Example:\n"
|
13 |
+
" export HF_TOKEN=XXXXXXXX\n"
|
14 |
+
)
|
15 |
+
|
16 |
model_id = "CompVis/stable-diffusion-v1-4"
|
17 |
device = "cpu"
|
18 |
pipe = StableDiffusionPipeline.from_pretrained(
|
19 |
+
model_id, token=auth_token, variant="fp16", torch_dtype=torch.float16,
|
20 |
)
|
21 |
pipe = pipe.to(device)
|
22 |
|
23 |
+
|
24 |
def infer(prompt, samples, steps, scale, seed):
|
25 |
generator = torch.Generator(device=device).manual_seed(seed)
|
26 |
images_list = pipe( # type: ignore
|
|
|
38 |
images.append(image)
|
39 |
return images
|
40 |
|
41 |
+
|
42 |
block = gr.Blocks()
|
43 |
|
44 |
with block:
|
|
|
73 |
step=1,
|
74 |
randomize=True,
|
75 |
)
|
76 |
+
gr.on(
|
77 |
+
[text.submit, btn.click],
|
78 |
+
infer,
|
79 |
+
inputs=[text, samples, steps, scale, seed],
|
80 |
+
outputs=gallery,
|
81 |
+
)
|
82 |
advanced_button.click(
|
83 |
None,
|
84 |
[],
|