File size: 58,247 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
import logging
import warnings
from typing import Callable, List, Optional, Union, Dict, Any

import PIL
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel
from diffusers.utils.import_utils import is_accelerate_available
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.schedulers import KarrasDiffusionSchedulers, PNDMScheduler, DDIMScheduler, DDPMScheduler
from diffusers.utils import deprecate
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
import transformers
import diffusers
import accelerate
from accelerate import Accelerator
from torchvision.transforms import InterpolationMode
import argparse
from omegaconf import OmegaConf
from mvdiffusion.models_unclip.unet_mv2d_condition import UNetMV2DConditionModel
# from mvdiffusion.data.objaverse_dataset_unclip_xxdata import ObjaverseDataset as MVDiffusionDataset
from mvdiffusion.data.dreamdata import ObjaverseDataset as MVDiffusionDataset
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from accelerate.logging import get_logger
import os
import numpy as np
from PIL import Image
import math
from tqdm import tqdm
from einops import rearrange, repeat
from torchvision.transforms import InterpolationMode
from einops import rearrange, repeat
from diffusers.schedulers import PNDMScheduler
from collections import defaultdict
from torchvision.utils import make_grid, save_image
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from dataclasses import dataclass
import json
import shutil
from mvdiffusion.models_unclip.face_networks import prepare_face_proj_model
logger = get_logger(__name__, log_level="INFO")
@dataclass
class TrainingConfig:
    pretrained_model_name_or_path: str
    pretrained_unet_path: Optional[str]
    clip_path: str
    revision: Optional[str]
    data_common: Optional[dict]
    train_dataset: Dict
    validation_dataset: Dict
    validation_train_dataset: Dict
    output_dir: str
    checkpoint_prefix: str
    seed: Optional[int]
    train_batch_size: int
    validation_batch_size: int
    validation_train_batch_size: int
    max_train_steps: int
    gradient_accumulation_steps: int
    gradient_checkpointing: bool
    learning_rate: float
    scale_lr: bool
    lr_scheduler: str
    step_rules: Optional[str]
    lr_warmup_steps: int
    snr_gamma: Optional[float]
    use_8bit_adam: bool
    allow_tf32: bool
    use_ema: bool
    dataloader_num_workers: int
    adam_beta1: float
    adam_beta2: float
    adam_weight_decay: float
    adam_epsilon: float
    max_grad_norm: Optional[float]
    prediction_type: Optional[str]
    logging_dir: str
    vis_dir: str
    mixed_precision: Optional[str]
    report_to: Optional[str]
    local_rank: int
    checkpointing_steps: int
    checkpoints_total_limit: Optional[int]
    resume_from_checkpoint: Optional[str]
    enable_xformers_memory_efficient_attention: bool
    validation_steps: int
    validation_sanity_check: bool
    tracker_project_name: str

    trainable_modules: Optional[list]
    use_classifier_free_guidance: bool
    condition_drop_rate: float
    scale_input_latents: bool
    regress_elevation: bool
    regress_focal_length: bool
    elevation_loss_weight: float
    focal_loss_weight: float
    pipe_kwargs: Dict
    pipe_validation_kwargs: Dict
    unet_from_pretrained_kwargs: Dict
    validation_guidance_scales: List[float]
    validation_grid_nrow: int
    camera_embedding_lr_mult: float
    plot_pose_acc: bool
    num_views: int
    data_view_num: Optional[int]
    pred_type: str
    drop_type: str
    with_smpl: Optional[bool]
    
@torch.no_grad()
def convert_image(
    tensor,
    fp,
    format: Optional[str] = None,
    **kwargs,
) -> None:
    """
    Save a given Tensor into an image file.

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
        fp (string or file object): A filename or a file object
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
        **kwargs: Other arguments are documented in ``make_grid``.
    """
    grid = make_grid(tensor, **kwargs)
    # Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
    im = Image.fromarray(ndarr)
    im.save(fp, format=format)

def log_validation_joint(dataloader, vae, feature_extractor, image_encoder, image_normlizer, image_noising_scheduler, tokenizer, text_encoder, 
                   unet, face_proj_model, cfg:TrainingConfig, accelerator, weight_dtype, global_step, name, save_dir):

    pipeline = StableUnCLIPImg2ImgPipeline(
        image_encoder=image_encoder, feature_extractor=feature_extractor, image_normalizer=image_normlizer,
        image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder,
        vae=vae, unet=accelerator.unwrap_model(unet),
        scheduler=DDIMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler"),
        **cfg.pipe_kwargs
    )

    pipeline.set_progress_bar_config(disable=True)

    if cfg.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=unet.device).manual_seed(cfg.seed)
    
    images_cond, pred_cat = [], defaultdict(list)
    for i, batch in tqdm(enumerate(dataloader)):
        images_cond.append(batch['imgs_in'][:, 0]) 
        if face_proj_model is not None:
            face_embeds = batch['face_embed'] 
            face_embeds = torch.cat([face_embeds]*2, dim=0)
            face_embeds = rearrange(face_embeds, "B Nv L C -> (B Nv) L C")
            face_embeds = face_embeds.to(device=accelerator.device, dtype=weight_dtype)
            face_embeds = face_proj_model(face_embeds)
        else:
            face_embeds = None
        # if dino_encoder:
        #     dino_input = TF.resize(batch['imgs_in'][:, 0], (224, 224)).float().to(accelerator.device)
        #     dino_feature = dino_encoder(dino_input)
        #     dino_feature = repeat(dino_feature, "B N C -> (B V) N C", V=cfg.num_views*2)
        # else:
        #     dino_feature = None
        imgs_in = torch.cat([batch['imgs_in']]*2, dim=0)
        num_views = imgs_in.shape[1]
        imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
        
        if cfg.with_smpl:
            smpl_in = torch.cat([batch['smpl_imgs_in']]*2, dim=0)
            smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W")
        else:
            smpl_in = None

        normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] 
        prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
        prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
        with torch.autocast("cuda"):
            # B*Nv images
            for guidance_scale in cfg.validation_guidance_scales:
                out = pipeline(
                    imgs_in, None, prompt_embeds=prompt_embeddings, 
                    dino_feature=face_embeds, smpl_in=smpl_in,
                    generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1,  **cfg.pipe_validation_kwargs
                ).images
                
                bsz = out.shape[0] // 2
                normals_pred = out[:bsz]
                images_pred = out[bsz:] 
                # print(normals_pred.shape, images_pred.shape)
                pred_cat[f"cfg{guidance_scale:.1f}"].append(torch.cat([normals_pred, images_pred], dim=-1)) # b, 3, h, w

    # from icecream import ic
    images_cond_all = torch.cat(images_cond, dim=0)
    images_pred_all = {}
    for k, v in pred_cat.items():             
        images_pred_all[k] = torch.cat(v, dim=0).cpu()
        # print(images_pred_all[k].shape)
        # import pdb;pdb.set_trace()
    nrow = cfg.validation_grid_nrow 
    # ncol = images_cond_all.shape[0] // nrow
    images_cond_grid = make_grid(images_cond_all, nrow=1, padding=0, value_range=(0, 1))
    edge_pad = torch.zeros(list(images_cond_grid.shape[:2]) + [3], dtype=torch.float32)
    images_vis = torch.cat([images_cond_grid, edge_pad], -1)
    for k, v in images_pred_all.items():
        images_vis = torch.cat([images_vis, make_grid(v, nrow=nrow, padding=0, value_range=(0, 1)), edge_pad], -1)
    save_image(images_vis, os.path.join(save_dir, f"{name}-{global_step}.jpg"))
    torch.cuda.empty_cache()    

def log_validation(dataloader, vae, feature_extractor, image_encoder, image_normlizer, image_noising_scheduler, tokenizer, text_encoder, 
                   unet, face_proj_model,  cfg:TrainingConfig, accelerator, weight_dtype, global_step, name, save_dir):
    logger.info(f"Running {name} ... ")

    pipeline = StableUnCLIPImg2ImgPipeline(
        image_encoder=image_encoder, feature_extractor=feature_extractor, image_normalizer=image_normlizer,
        image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder,
        vae=vae, unet=accelerator.unwrap_model(unet), 
        scheduler=DDIMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler"),
        **cfg.pipe_kwargs
    )

    pipeline.set_progress_bar_config(disable=True)

    if cfg.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()    

    if cfg.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed)
    
    images_cond, images_gt, images_pred = [], [], defaultdict(list)
    for i, batch in enumerate(dataloader):
        # (B, Nv, 3, H, W)
        imgs_in, colors_out, normals_out = batch['imgs_in'], batch['imgs_out'], batch['normals_out']
        images_cond.append(imgs_in[:, 0, :, :, :])
        
        # repeat  (2B, Nv, 3, H, W)
        imgs_in = torch.cat([imgs_in]*2, dim=0)
        imgs_out = torch.cat([normals_out, colors_out], dim=0)
        imgs_in, imgs_out = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W"), rearrange(imgs_out, "B Nv C H W -> (B Nv) C H W")
        images_gt.append(imgs_out)
        
        if cfg.with_smpl:
            smpl_in = torch.cat([batch['smpl_imgs_in']]*2, dim=0)
            smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W")
        else:
            smpl_in = None
        
        prompt_embeddings = torch.cat([batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']], dim=0)
        # (B*Nv, N, C)
        prompt_embeds = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
        prompt_embeds = prompt_embeds.to(weight_dtype)
        
        if face_proj_model is not None:
            face_embeds = batch['face_embed'] 
            face_embeds = torch.cat([face_embeds]*2, dim=0)
            face_embeds = rearrange(face_embeds, "B Nv L C -> (B Nv) L C")
            face_embeds = face_embeds.to(device=accelerator.device, dtype=weight_dtype)
            face_embeds = face_proj_model(face_embeds)
        else:
            face_embeds = None
        with torch.autocast("cuda"):
            # B*Nv images
            for guidance_scale in cfg.validation_guidance_scales:
                out = pipeline(
                    imgs_in, None, prompt_embeds=prompt_embeds, smpl_in=smpl_in, dino_feature=face_embeds, generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs
                ).images
                shape = out.shape
                out0, out1 = out[:shape[0]//2], out[shape[0]//2:]
                out = []
                for ii in range(shape[0]//2):
                    out.append(out0[ii])
                    out.append(out1[ii])
                out = torch.stack(out, dim=0)
                images_pred[f"{name}-sample_cfg{guidance_scale:.1f}"].append(out)
                
    images_cond_all = torch.cat(images_cond, dim=0)
    images_gt_all = torch.cat(images_gt, dim=0)
    images_pred_all = {}
    for k, v in images_pred.items():
        images_pred_all[k] = torch.cat(v, dim=0).cpu()
    
    nrow = cfg.validation_grid_nrow * 2
    images_cond_grid = make_grid(images_cond_all, nrow=1, padding=0, value_range=(0, 1))
    images_gt_grid = make_grid(images_gt_all, nrow=nrow, padding=0, value_range=(0, 1))
    edge_pad = torch.zeros(list(images_cond_grid.shape[:2]) + [3], dtype=torch.float32)
    images_vis = torch.cat([images_cond_grid.cpu(), edge_pad], -1)
    for k, v in images_pred_all.items():
        images_vis = torch.cat([images_vis, make_grid(v, nrow=nrow, padding=0, value_range=(0, 1)), edge_pad], -1)
    
    # images_pred_grid = {}
    # for k, v in images_pred_all.items():
    #     images_pred_grid[k] = make_grid(v, nrow=nrow, padding=0, value_range=(0, 1))
    save_image(images_vis, os.path.join(save_dir, f"{global_step}-{name}-cond.jpg"))
    save_image(images_gt_grid, os.path.join(save_dir, f"{global_step}-{name}-gt.jpg"))
    torch.cuda.empty_cache()


def noise_image_embeddings(
                    image_embeds: torch.Tensor,
                    noise_level: int,
                    noise: Optional[torch.FloatTensor] = None,
                    generator: Optional[torch.Generator] = None,
                    image_normalizer: Optional[StableUnCLIPImageNormalizer] = None,
                    image_noising_scheduler: Optional[DDPMScheduler] = None,
                    ):
    """
    Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
    `noise_level` increases the variance in the final un-noised images.

    The noise is applied in two ways
    1. A noise schedule is applied directly to the embeddings
    2. A vector of sinusoidal time embeddings are appended to the output.

    In both cases, the amount of noise is controlled by the same `noise_level`.

    The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
    """
    if noise is None:
        noise = randn_tensor(
            image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
        )
    noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)

    image_embeds = image_normalizer.scale(image_embeds)

    image_embeds = image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)

    image_embeds = image_normalizer.unscale(image_embeds)

    noise_level = get_timestep_embedding(
        timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
    )

    # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
    # but we might actually be running in fp16. so we need to cast here.
    # there might be better ways to encapsulate this.
    noise_level = noise_level.to(image_embeds.dtype)
    image_embeds = torch.cat((image_embeds, noise_level), 1)
    return image_embeds


def main(cfg: TrainingConfig):
    # -------------------------------------------prepare custom log and accelaeator --------------------------------
    # override local_rank with envvar
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank not in [-1, cfg.local_rank]:
        cfg.local_rank = env_local_rank

    logging_dir = os.path.join(cfg.output_dir, cfg.logging_dir)
    model_dir = os.path.join(cfg.checkpoint_prefix, cfg.output_dir)
    vis_dir = os.path.join(cfg.output_dir, cfg.vis_dir)
    accelerator_project_config = ProjectConfiguration(project_dir=cfg.output_dir, logging_dir=logging_dir)
    # print(os.getenv("SLURM_PROCID"), os.getenv("SLURM_LOCALID"), os.getenv("SLURM_NODEID"), os.getenv('GLOBAL_RANK'), os.getenv('LOCAL_RANK'), os.getenv('RNAK'), os.getenv('MASTER_ADDR'))
    # exit()
    accelerator = Accelerator(
        gradient_accumulation_steps=cfg.gradient_accumulation_steps,
        mixed_precision=cfg.mixed_precision,
        log_with=cfg.report_to,
        project_config=accelerator_project_config,
    )
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if cfg.seed is not None:
        set_seed(cfg.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        os.makedirs(model_dir, exist_ok=True)
        os.makedirs(cfg.output_dir, exist_ok=True)
        os.makedirs(vis_dir, exist_ok=True)
        OmegaConf.save(cfg, os.path.join(cfg.output_dir, 'config.yaml'))
    ## -------------------------------------- load models -------------------------------- 
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
    feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
    image_noising_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_noising_scheduler")
    image_normlizer = StableUnCLIPImageNormalizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_normalizer")
    
    tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="tokenizer", revision=cfg.revision)
    text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder='text_encoder', revision=cfg.revision)
    # note: official code use PNDMScheduler 
    noise_scheduler = DDPMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler")
    vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
    if cfg.pretrained_unet_path is None:
       
        unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
    else:
        logger.info(f'laod pretrained model from {cfg.pretrained_unet_path}')
        unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
    # unet = UNet2DConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision)
    if cfg.unet_from_pretrained_kwargs.use_dino:
        from models.dinov2_wrapper import Dinov2Wrapper
        dino_encoder = Dinov2Wrapper(model_name='dinov2_vitb14', freeze=True)
    else:
        dino_encoder = None
    
    # TODO: extract face projection model weights 
    if cfg.unet_from_pretrained_kwargs.use_face_adapter:
        face_proj_model = prepare_face_proj_model('models/image_proj_model.pth',  cross_attention_dim=1024, pretrain=False)
    else:
        face_proj_model = None
        
    if cfg.use_ema:
        ema_unet = EMAModel(unet.parameters(), model_cls=UNetMV2DConditionModel, model_config=unet.config)
        # ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config)
    def compute_snr(timesteps):
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod**0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

        # Expand the tensors.
        # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
        sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
        alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
        sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

        # Compute SNR.
        snr = (alpha / sigma) ** 2
        return snr

    # Freeze vae, image_encoder, text_encoder
    vae.requires_grad_(False)
    image_encoder.requires_grad_(False)
    image_normlizer.requires_grad_(False)
    text_encoder.requires_grad_(False)
    if face_proj_model is not None: face_proj_model.requires_grad_(True)

    if cfg.trainable_modules is None:
        unet.requires_grad_(True)
    else:
        unet.requires_grad_(False)
        for name, module in unet.named_modules():
            if name.endswith(tuple(cfg.trainable_modules)):
                for params in module.parameters():
                    params.requires_grad = True     
                               
    if cfg.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
            print("use xformers to speed up")
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if cfg.use_ema:
                ema_unet.save_pretrained(os.path.join(cfg.checkpoint_prefix, output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(cfg.checkpoint_prefix, output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            if cfg.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(cfg.checkpoint_prefix, input_dir, "unet_ema"), UNetMV2DConditionModel)
                ema_unet.load_state_dict(load_model.state_dict())
                ema_unet.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNetMV2DConditionModel.from_pretrained(os.path.join(cfg.checkpoint_prefix, input_dir), subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)
    
    if cfg.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if cfg.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True  
        
    # -------------------------------------- optimizer and lr --------------------------------
    if cfg.scale_lr:
        cfg.learning_rate = (
            cfg.learning_rate * cfg.gradient_accumulation_steps * cfg.train_batch_size * accelerator.num_processes
        )
    # Initialize the optimizer
    if cfg.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )
        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    params, params_class_embedding, params_rowwise_layers = [], [], []
    for name, param in unet.named_parameters():
        if ('class_embedding' in name) or ('camera_embedding' in name):
            params_class_embedding.append(param)
        elif ('attn_mv' in name) or ('norm_mv' in name):
            # print('Find mv attn block')
            params_rowwise_layers.append(param)
        else:
            params.append(param)
    opti_params = [{"params": params, "lr": cfg.learning_rate}]
    if len(params_class_embedding) > 0:
        opti_params.append({"params": params_class_embedding, "lr": cfg.learning_rate * cfg.camera_embedding_lr_mult})
    if len(params_rowwise_layers) > 0:
        opti_params.append({"params": params_rowwise_layers, "lr": cfg.learning_rate * cfg.camera_embedding_lr_mult})
    optimizer = optimizer_cls(
        opti_params,
        betas=(cfg.adam_beta1, cfg.adam_beta2),
        weight_decay=cfg.adam_weight_decay,
        eps=cfg.adam_epsilon,
    )
    lr_scheduler = get_scheduler(
        cfg.lr_scheduler,
        step_rules=cfg.step_rules,
        optimizer=optimizer,
        num_warmup_steps=cfg.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=cfg.max_train_steps * accelerator.num_processes,
    )
    # -------------------------------------- load dataset --------------------------------
    # Get the training dataset
    train_dataset = MVDiffusionDataset(
        **cfg.train_dataset
    )
    if cfg.with_smpl:
        from mvdiffusion.data.testdata_with_smpl import SingleImageDataset
    else:
        from mvdiffusion.data.single_image_dataset import SingleImageDataset
    validation_dataset = SingleImageDataset(
        **cfg.validation_dataset
    )
    validation_train_dataset = MVDiffusionDataset(
        **cfg.validation_train_dataset
    )

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=cfg.train_batch_size, shuffle=True, num_workers=cfg.dataloader_num_workers,
    )
    validation_dataloader = torch.utils.data.DataLoader(
        validation_dataset, batch_size=cfg.validation_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers
    )
    validation_train_dataloader = torch.utils.data.DataLoader(
        validation_train_dataset, batch_size=cfg.validation_train_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers
    )
    # Prepare everything with our `accelerator`.
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )
    if cfg.use_ema:
        ema_unet.to(accelerator.device)
    # -------------------------------------- cast dtype and device --------------------------------
    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        cfg.mixed_precision = accelerator.mixed_precision
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        cfg.mixed_precision = accelerator.mixed_precision

    # Move text_encode and vae to gpu and cast to weight_dtype
    image_encoder.to(accelerator.device, dtype=weight_dtype)
    image_normlizer.to(accelerator.device, weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
    if face_proj_model: face_proj_model.to(accelerator.device, dtype=weight_dtype)
    if dino_encoder: dino_encoder.to(accelerator.device)

    clip_image_mean = torch.as_tensor(feature_extractor.image_mean)[:,None,None].to(accelerator.device, dtype=torch.float32)
    clip_image_std = torch.as_tensor(feature_extractor.image_std)[:,None,None].to(accelerator.device, dtype=torch.float32)
    
    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / cfg.gradient_accumulation_steps)
    num_train_epochs = math.ceil(cfg.max_train_steps / num_update_steps_per_epoch)
    
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        # tracker_config = dict(vars(cfg))
        tracker_config = {}
        accelerator.init_trackers(
            project_name= cfg.tracker_project_name, 
            config= tracker_config,
            init_kwargs={"wandb": 
                {"entity": "lpstarry",
                 "notes": cfg.output_dir.split('/')[-1],
                #  "tags": [cfg.output_dir.split('/')[-1]],
                }},)    

    # -------------------------------------- load pipeline --------------------------------
    # pipe = StableUnCLIPImg2ImgPipeline(feature_extractor=feature_extractor,
    #                                     image_encoder=image_encoder,
    #                                     image_normalizer=image_normlizer,
    #                                     image_noising_scheduler= image_noising_scheduler,
    #                                     tokenizer=tokenizer,
    #                                     text_encoder=text_encoder,
    #                                     unet=unet,
    #                                     scheduler=noise_scheduler,
    #                                     vae=vae).to('cuda')
    
    # -------------------------------------- train --------------------------------
    total_batch_size = cfg.train_batch_size * accelerator.num_processes * cfg.gradient_accumulation_steps
    generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed)
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {cfg.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {cfg.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {cfg.max_train_steps}")
    global_step = 0
    first_epoch = 0
    
    # Potentially load in the weights and states from a previous save
    if cfg.resume_from_checkpoint:
        if cfg.resume_from_checkpoint != "latest":
            path = os.path.basename(cfg.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            if os.path.exists(os.path.join(model_dir, "checkpoint")):
                path = "checkpoint"
            else:
                dirs = os.listdir(model_dir)
                dirs = [d for d in dirs if d.startswith("checkpoint")]
                dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
                path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{cfg.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            cfg.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(model_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch

    if False:
        # log_validation_joint(
        #         validation_dataloader,
        #         vae,
        #         feature_extractor,
        #         image_encoder,
        #         image_normlizer,
        #         image_noising_scheduler,
        #         tokenizer,
        #         text_encoder,
        #         unet,
        #         dino_encoder,
        #         cfg,
        #         accelerator,
        #         weight_dtype,
        #         global_step,
        #         'validation',
        #         vis_dir
        #     )
        log_validation(
                validation_train_dataloader,
                vae,
                feature_extractor,
                image_encoder,
                image_normlizer,
                image_noising_scheduler,
                tokenizer,
                text_encoder,
                unet,
                cfg,
                accelerator,
                weight_dtype,
                global_step,
                'validation-train',
                vis_dir
            )   
        exit()   
    
    progress_bar = tqdm(
        range(0, cfg.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
    
    new_layer_norm = {}
    # Main training loop
    
    for epoch in range(first_epoch, num_train_epochs):
        unet.train()
        train_mse_loss, train_ele_loss, train_focal_loss = 0.0, 0.0, 0.0
        for step, batch in enumerate(train_dataloader):
            # Skip steps until we reach the resumed step
            # if cfg.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
            #     if step % cfg.gradient_accumulation_steps == 0:
            #         progress_bar.update(1)
            #     continue
            
            with accelerator.accumulate(unet):
                # (B, Nv, 3, H, W)
                imgs_in, colors_out, normals_out = batch['imgs_in'], batch['imgs_out'], batch['normals_out']
                ids = batch['id']
                bnm, Nv = imgs_in.shape[:2]
                # repeat  (2B, Nv, 3, H, W)
                imgs_in = torch.cat([imgs_in]*2, dim=0)
                imgs_out = torch.cat([normals_out, colors_out], dim=0)
                # (B*Nv, 3, H, W)
                imgs_in, imgs_out = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W"), rearrange(imgs_out, "B Nv C H W -> (B Nv) C H W")
                imgs_in, imgs_out = imgs_in.to(weight_dtype), imgs_out.to(weight_dtype)
                
                if cfg.with_smpl:
                    smpl_in = batch['smpl_imgs_in']
                    smpl_in = torch.cat([smpl_in]*2, dim=0)
                    smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W").to(weight_dtype)
                else:
                    smpl_in = None
                     
                prompt_embeddings = torch.cat([batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']], dim=0)
                # (B*Nv, N, C)
                prompt_embeds = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
                prompt_embeds = prompt_embeds.to(weight_dtype)  # BV, L, C
                # ------------------------------------project face embed --------------------------------
                if face_proj_model is not None:
                    face_embeds = batch['face_embed'] 
                    face_embeds = torch.cat([face_embeds]*2, dim=0)
                    face_embeds = rearrange(face_embeds, "B Nv L C -> (B Nv) L C")
                    face_embeds = face_embeds.to(weight_dtype)
                    face_embeds = face_proj_model(face_embeds)
                else:
                    face_embeds = None
                # ------------------------------------Encoder input image --------------------------------                
                imgs_in_proc = TF.resize(imgs_in, (feature_extractor.crop_size['height'], feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC)
                # do the normalization in float32 to preserve precision
                imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(weight_dtype)        
                # (B*Nv, 1024)
                image_embeddings = image_encoder(imgs_in_proc).image_embeds

                noise_level =  torch.tensor([0], device=accelerator.device)
                # (B*Nv, 2048)
                image_embeddings = noise_image_embeddings(image_embeddings, noise_level, generator=generator, image_normalizer=image_normlizer, 
                                                        image_noising_scheduler= image_noising_scheduler).to(weight_dtype)  
                #--------------------------------------vae input and output latents ---------------------------------------  
                cond_vae_embeddings = vae.encode(imgs_in * 2.0 - 1.0).latent_dist.mode() # 
                if cfg.scale_input_latents:
                    cond_vae_embeddings *=  vae.config.scaling_factor
                if cfg.with_smpl:
                    cond_smpl_embeddings = vae.encode(smpl_in * 2.0 - 1.0).latent_dist.mode()
                    if cfg.scale_input_latents:
                        cond_smpl_embeddings *=  vae.config.scaling_factor
                    cond_vae_embeddings = torch.cat([cond_vae_embeddings, cond_smpl_embeddings], dim=1)
                # sample outputs latent
                latents = vae.encode(imgs_out * 2.0 - 1.0).latent_dist.sample() * vae.config.scaling_factor
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]

                # same noise for different views of the same object
                timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz // cfg.num_views,), device=latents.device)
                timesteps = repeat(timesteps, "b -> (b v)", v=cfg.num_views)
                timesteps = timesteps.long()                

                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Conditioning dropout to support classifier-free guidance during inference. For more details
                # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
                if cfg.use_classifier_free_guidance and cfg.condition_drop_rate > 0.:
                    if cfg.drop_type == 'drop_as_a_whole':
                        # drop a group of normals and colors as a whole
                        random_p = torch.rand(bnm, device=latents.device, generator=generator)

                        # Sample masks for the conditioning images.
                        image_mask_dtype = cond_vae_embeddings.dtype
                        image_mask = 1 - (
                            (random_p >= cfg.condition_drop_rate).to(image_mask_dtype)
                            * (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype)
                        )
                        image_mask = image_mask.reshape(bnm, 1, 1, 1, 1).repeat(1, Nv, 1, 1, 1)
                        image_mask = rearrange(image_mask, "B Nv C H W -> (B Nv) C H W")
                        image_mask = torch.cat([image_mask]*2, dim=0)
                        # Final image conditioning.
                        cond_vae_embeddings = image_mask * cond_vae_embeddings

                        # Sample masks for the conditioning images.
                        clip_mask_dtype = image_embeddings.dtype
                        clip_mask = 1 - (
                            (random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype)
                        )
                        clip_mask = clip_mask.reshape(bnm, 1,  1).repeat(1, Nv,  1)
                        clip_mask = rearrange(clip_mask, "B Nv C -> (B Nv) C")
                        clip_mask = torch.cat([clip_mask]*2, dim=0)
                        # Final image conditioning.
                        image_embeddings = clip_mask * image_embeddings
                    elif cfg.drop_type == 'drop_independent':
                        random_p = torch.rand(bsz, device=latents.device, generator=generator)

                        # Sample masks for the conditioning images.
                        image_mask_dtype = cond_vae_embeddings.dtype
                        image_mask = 1 - (
                            (random_p >= cfg.condition_drop_rate).to(image_mask_dtype)
                            * (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype)
                        )
                        image_mask = image_mask.reshape(bsz, 1, 1, 1)
                        # Final image conditioning.
                        cond_vae_embeddings = image_mask * cond_vae_embeddings

                        # Sample masks for the conditioning images.
                        clip_mask_dtype = image_embeddings.dtype
                        clip_mask = 1 - (
                            (random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype)
                        )
                        clip_mask = clip_mask.reshape(bsz, 1, 1)
                        # Final image conditioning.
                        image_embeddings = clip_mask * image_embeddings

                # (B*Nv, 8, Hl, Wl)
                latent_model_input = torch.cat([noisy_latents, cond_vae_embeddings], dim=1)
                model_out = unet(
                    latent_model_input,
                    timesteps,
                    encoder_hidden_states=prompt_embeds,
                    class_labels=image_embeddings,
                    dino_feature=face_embeds,
                    vis_max_min=False
                )
                
                if cfg.regress_elevation or cfg.regress_focal_length:
                    model_pred = model_out[0].sample
                    pose_pred = model_out[1]
                else:
                    model_pred = model_out[0].sample
                    pose_pred = None

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                    # target = noise_scheduler._get_prev_sample(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") 

                if cfg.snr_gamma is None:
                    loss_mse = F.mse_loss(model_pred.float(), target.float(), reduction="mean").to(weight_dtype)
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
                    snr = compute_snr(timesteps)
                    mse_loss_weights = (
                        torch.stack([snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )
                    # We first calculate the original loss. Then we mean over the non-batch dimensions and
                    # rebalance the sample-wise losses with their respective loss weights.
                    # Finally, we take the mean of the rebalanced loss.
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss_mse = loss.mean().to(weight_dtype)                    
                # Gather the losses across all processes for logging (if we use distributed training).
                avg_mse_loss = accelerator.gather(loss_mse.repeat(cfg.train_batch_size)).mean()
                train_mse_loss += avg_mse_loss.item() / cfg.gradient_accumulation_steps

                if cfg.regress_elevation:
                    loss_ele = F.mse_loss(pose_pred[:, 0:1], batch['elevations_cond'].to(accelerator.device).float(), reduction="mean").to(weight_dtype)            
                    avg_ele_loss = accelerator.gather(loss_ele.repeat(cfg.train_batch_size)).mean()
                    train_ele_loss += avg_ele_loss.item() / cfg.gradient_accumulation_steps
                    if cfg.plot_pose_acc:
                        ele_acc = torch.sum(torch.abs(pose_pred[:, 0:1] - torch.cat([batch['elevations_cond']]*2)) < 0.01) / pose_pred.shape[0]
                else:
                    loss_ele = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype)
                    train_ele_loss += torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype)
                    if cfg.plot_pose_acc:
                        ele_acc = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype)

                if cfg.regress_focal_length:
                    loss_focal = F.mse_loss(pose_pred[:, 1:], batch['focal_cond'].to(accelerator.device).float(), reduction="mean").to(weight_dtype)
                    avg_focal_loss = accelerator.gather(loss_focal.repeat(cfg.train_batch_size)).mean()
                    train_focal_loss += avg_focal_loss.item() / cfg.gradient_accumulation_steps
                    if cfg.plot_pose_acc:
                        focal_acc = torch.sum(torch.abs(pose_pred[:, 1:] - torch.cat([batch['focal_cond']]*2)) < 0.01) / pose_pred.shape[0]
                else:
                    loss_focal = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype)
                    train_focal_loss += torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype)
                    if cfg.plot_pose_acc:
                        focal_acc = torch.tensor(0.0, device=accelerator.device, dtype=weight_dtype)

                # Backpropagate
                loss = loss_mse + cfg.elevation_loss_weight * loss_ele + cfg.focal_loss_weight * loss_focal 
                accelerator.backward(loss)

                if accelerator.sync_gradients and cfg.max_grad_norm is not None:
                    accelerator.clip_grad_norm_(unet.parameters(), cfg.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if cfg.use_ema:
                    ema_unet.step(unet)
                progress_bar.update(1)
                global_step += 1
                # accelerator.log({"train_loss": train_loss}, step=global_step)
                accelerator.log({"train_mse_loss": train_mse_loss}, step=global_step)
                accelerator.log({"train_ele_loss": train_ele_loss}, step=global_step)
                if cfg.plot_pose_acc:
                    accelerator.log({"ele_acc": ele_acc}, step=global_step)
                    accelerator.log({"focal_acc": focal_acc}, step=global_step)
                accelerator.log({"train_focal_loss": train_focal_loss}, step=global_step)
                
                train_ele_loss, train_mse_loss, train_focal_loss = 0.0, 0.0, 0.0

                if global_step % cfg.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        if cfg.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(model_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= cfg.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - cfg.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(model_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)
                        
                        save_path = os.path.join(model_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                if global_step % cfg.validation_steps == 0 or (cfg.validation_sanity_check and global_step == 1):
                    if accelerator.is_main_process:
                        if cfg.use_ema:
                            # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                            ema_unet.store(unet.parameters())
                            ema_unet.copy_to(unet.parameters())
                        torch.cuda.empty_cache()
                        log_validation_joint(
                            validation_dataloader,
                            vae,
                            feature_extractor,
                            image_encoder,
                            image_normlizer,
                            image_noising_scheduler,
                            tokenizer,
                            text_encoder,
                            unet,
                            face_proj_model,
                            cfg,
                            accelerator,
                            weight_dtype,
                            global_step,
                            'validation',
                            vis_dir
                        )
                        log_validation(
                            validation_train_dataloader,
                            vae,
                            feature_extractor,
                            image_encoder,
                            image_normlizer,
                            image_noising_scheduler,
                            tokenizer,
                            text_encoder,
                            unet,
                            face_proj_model,
                            cfg,
                            accelerator,
                            weight_dtype,
                            global_step,
                            'validation_train',
                            vis_dir
                        )           
                            
                        if cfg.use_ema:
                            # Switch back to the original UNet parameters.
                            ema_unet.restore(unet.parameters())                        

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= cfg.max_train_steps:
                break
            
    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        if cfg.use_ema:
            ema_unet.copy_to(unet.parameters())
        pipeline = StableUnCLIPImg2ImgPipeline(
            image_encoder=image_encoder, feature_extractor=feature_extractor, image_normalizer=image_normlizer,
            image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder,
            vae=vae, unet=unet, 
            scheduler=DDIMScheduler.from_pretrained_linear(cfg.pretrained_model_name_or_path, subfolder="scheduler"),
            **cfg.pipe_kwargs
        )        
        os.makedirs(os.path.join(model_dir, "ckpts"), exist_ok=True)
        pipeline.save_pretrained(os.path.join(model_dir, "ckpts"))

    accelerator.end_training()


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, required=True)
    args = parser.parse_args()
    schema = OmegaConf.structured(TrainingConfig)
    cfg = OmegaConf.load(args.config)
    cfg = OmegaConf.merge(schema, cfg)
    main(cfg)
    
    # device = 'cuda'
    # ## -------------------------------------- load models -------------------------------- 
    # image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
    # feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
    # image_noising_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_noising_scheduler")
    # image_normlizer = StableUnCLIPImageNormalizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_normalizer")
    
    # tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="tokenizer", revision=cfg.revision)
    # text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder='text_encoder', revision=cfg.revision)
    
    # noise_scheduler = PNDMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
    # vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
    # unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
    # # unet = UNetMV2DConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision,
    #                                                 #   **cfg.unet_from_pretrained_kwargs
    #                                                 #   )
    

    # if cfg.enable_xformers_memory_efficient_attention:
    #     if is_xformers_available():
    #         import xformers

    #         xformers_version = version.parse(xformers.__version__)
    #         if xformers_version == version.parse("0.0.16"):
    #             print(
    #                 "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
    #             )
    #         unet.enable_xformers_memory_efficient_attention()
    #         print("use xformers.")
           
    # # from diffusers import StableUnCLIPImg2ImgPipeline
    # # -------------------------------------- load pipeline --------------------------------
    # pipe = StableUnCLIPImg2ImgPipeline(feature_extractor=feature_extractor,
    #                                     image_encoder=image_encoder,
    #                                     image_normalizer=image_normlizer,
    #                                     image_noising_scheduler= image_noising_scheduler,
    #                                     tokenizer=tokenizer,
    #                                     text_encoder=text_encoder,
    #                                     unet=unet,
    #                                     scheduler=noise_scheduler,
    #                                     vae=vae).to('cuda')
    
    # # -------------------------------------- input --------------------------------
    # # image =  Image.open('test/woman.jpg')
    # # w, h = image.size
    # # image = np.asarray(image)[:w, :w, :]
    # # image_in = Image.fromarray(image).resize((768, 768))
    
    # im_path = '/mnt/pfs/users/longxiaoxiao/data/test_images/syncdreamer_testset/box.png'
    # rgba =  np.array(Image.open(im_path)) / 255.0
    # rgb = rgba[:,:,:3]
    # alpha = rgba[:,:,3:4]
    # bg_color = np.array([1., 1., 1.])
    # image_in = rgb * alpha + (1 - alpha) * bg_color[None,None,:]
    # image_in = Image.fromarray((image_in * 255).astype(np.uint8)).resize((768, 768))
    # res = pipe(image_in, 'a rendering image of 3D models, left view, normal map.').images[0]
    # res.save("unclip.png")