PSHuman / lib /net /HGFilters.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
from lib.net.net_util import *
import torch.nn as nn
import torch.nn.functional as F
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features, opt):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self.opt = opt
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level),
ConvBlock(self.features, self.features, self.opt))
self.add_module('b2_' + str(level),
ConvBlock(self.features, self.features, self.opt))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level),
ConvBlock(self.features, self.features, self.opt))
self.add_module('b3_' + str(level),
ConvBlock(self.features, self.features, self.opt))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
# NOTE: for newer PyTorch (1.3~), it seems that training results are degraded due to implementation diff in F.grid_sample
# if the pretrained model behaves weirdly, switch with the commented line.
# NOTE: I also found that "bicubic" works better.
up2 = F.interpolate(low3,
scale_factor=2,
mode='bicubic',
align_corners=True)
# up2 = F.interpolate(low3, scale_factor=2, mode='nearest)
return up1 + up2
def forward(self, x):
return self._forward(self.depth, x)
class HGFilter(nn.Module):
def __init__(self, opt, num_modules, in_dim):
super(HGFilter, self).__init__()
self.num_modules = num_modules
self.opt = opt
[k, s, d, p] = self.opt.conv1
# self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3)
self.conv1 = nn.Conv2d(in_dim,
64,
kernel_size=k,
stride=s,
dilation=d,
padding=p)
if self.opt.norm == 'batch':
self.bn1 = nn.BatchNorm2d(64)
elif self.opt.norm == 'group':
self.bn1 = nn.GroupNorm(32, 64)
if self.opt.hg_down == 'conv64':
self.conv2 = ConvBlock(64, 64, self.opt)
self.down_conv2 = nn.Conv2d(64,
128,
kernel_size=3,
stride=2,
padding=1)
elif self.opt.hg_down == 'conv128':
self.conv2 = ConvBlock(64, 128, self.opt)
self.down_conv2 = nn.Conv2d(128,
128,
kernel_size=3,
stride=2,
padding=1)
elif self.opt.hg_down == 'ave_pool':
self.conv2 = ConvBlock(64, 128, self.opt)
else:
raise NameError('Unknown Fan Filter setting!')
self.conv3 = ConvBlock(128, 128, self.opt)
self.conv4 = ConvBlock(128, 256, self.opt)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module),
HourGlass(1, opt.num_hourglass, 256, self.opt))
self.add_module('top_m_' + str(hg_module),
ConvBlock(256, 256, self.opt))
self.add_module(
'conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
if self.opt.norm == 'batch':
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
elif self.opt.norm == 'group':
self.add_module('bn_end' + str(hg_module),
nn.GroupNorm(32, 256))
self.add_module(
'l' + str(hg_module),
nn.Conv2d(256,
opt.hourglass_dim,
kernel_size=1,
stride=1,
padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module(
'al' + str(hg_module),
nn.Conv2d(opt.hourglass_dim,
256,
kernel_size=1,
stride=1,
padding=0))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
tmpx = x
if self.opt.hg_down == 'ave_pool':
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
elif self.opt.hg_down in ['conv64', 'conv128']:
x = self.conv2(x)
x = self.down_conv2(x)
else:
raise NameError('Unknown Fan Filter setting!')
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(
self._modules['bn_end' + str(i)](
self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs
class FuseHGFilter(nn.Module):
def __init__(self, opt, num_modules, in_dim):
super(FuseHGFilter, self).__init__()
self.num_modules = num_modules
self.opt = opt
[k, s, d, p] = self.opt.conv1
# self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3)
self.conv1 = nn.Conv2d(in_dim,
64,
kernel_size=k,
stride=s,
dilation=d,
padding=p)
if self.opt.norm == 'batch':
self.bn1 = nn.BatchNorm2d(64)
elif self.opt.norm == 'group':
self.bn1 = nn.GroupNorm(32, 64)
self.conv2 = ConvBlock(64, 128, self.opt)
self.down_conv2 = nn.Conv2d(128,
96,
kernel_size=3,
stride=2,
padding=1)
# elif self.opt.hg_down == 'conv128':
# self.conv2 = ConvBlock(64, 128, self.opt)
# self.down_conv2 = nn.Conv2d(128,
# 128,
# kernel_size=3,
# stride=2,
# padding=1)
dim=96+32
self.conv3 = ConvBlock(dim, dim, self.opt)
self.conv4 = ConvBlock(dim, 256, self.opt)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module),
HourGlass(1, opt.num_hourglass, 256, self.opt))
self.add_module('top_m_' + str(hg_module),
ConvBlock(256, 256, self.opt))
self.add_module(
'conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
if self.opt.norm == 'batch':
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
elif self.opt.norm == 'group':
self.add_module('bn_end' + str(hg_module),
nn.GroupNorm(32, 256))
hourglass_dim=256
self.add_module(
'l' + str(hg_module),
nn.Conv2d(256,
hourglass_dim,
kernel_size=1,
stride=1,
padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module(
'al' + str(hg_module),
nn.Conv2d(hourglass_dim,
256,
kernel_size=1,
stride=1,
padding=0))
self.up_conv=nn.ConvTranspose2d(hourglass_dim,64,kernel_size=2,stride=2)
def forward(self, x,plane):
x = F.relu(self.bn1(self.conv1(x)), True) # 64*256*256
tmpx = x
x = self.conv2(x)
x = self.down_conv2(x)
x=torch.cat([x,plane],1) # 128*128*128
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(
self._modules['bn_end' + str(i)](
self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
out=self.up_conv(outputs[-1])
return out