PSHuman / lib /net /PymaridPoolingTransformer.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
from os import sep
from pickle import TRUE
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import numpy as np
__all__ = [
'p2t_tiny', 'p2t_small', 'p2t_base', 'p2t_large'
]
class IRB(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, ksize=3, act_layer=nn.Hardswish, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0)
self.act = act_layer()
self.conv = nn.Conv2d(hidden_features, hidden_features, kernel_size=ksize, padding=ksize//2, stride=1, groups=hidden_features)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0)
self.drop = nn.Dropout(drop)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.permute(0,2,1).reshape(B, C, H, W)
x = self.fc1(x)
x = self.act(x)
x = self.conv(x)
x = self.act(x)
x = self.fc2(x)
return x.reshape(B, C, -1).permute(0,2,1)
class PoolingAttention(nn.Module):
def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
pool_ratios=[1,2,3,6]):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
self.num_elements = np.array([t*t for t in pool_ratios]).sum()
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Sequential(nn.Linear(dim, dim, bias=qkv_bias))
self.kv = nn.Sequential(nn.Linear(dim, dim * 2, bias=qkv_bias))
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.pool_ratios = pool_ratios
self.pools = nn.ModuleList()
self.norm = nn.LayerNorm(dim)
def forward(self, x, H, W, d_convs=None):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
pools = []
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
for (pool_ratio, l) in zip(self.pool_ratios, d_convs):
pool = F.adaptive_avg_pool2d(x_, (round(H/pool_ratio), round(W/pool_ratio)))
pool = pool + l(pool) # fix backward bug in higher torch versions when training
pools.append(pool.view(B, C, -1))
pools = torch.cat(pools, dim=2)
pools = self.norm(pools.permute(0,2,1))
kv = self.kv(pools).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v)
x = x.transpose(1,2).contiguous().reshape(B, N, C)
x = self.proj(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_ratios=[12,16,20,24]):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = PoolingAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, pool_ratios=pool_ratios)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = IRB(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=nn.Hardswish, drop=drop, ksize=3)
def forward(self, x, H, W, d_convs=None):
x = x + self.drop_path(self.attn(self.norm1(x), H, W, d_convs=d_convs))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class PatchEmbed(nn.Module):
""" (Overlapped) Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, kernel_size=3, in_chans=3, embed_dim=768, overlap=True):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
if not overlap:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=kernel_size//2)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, (H, W)
class PyramidPoolingTransformer(nn.Module):
def __init__(self, img_size=512, patch_size=2, in_chans=3, num_classes=1000, embed_dims=[64, 256, 320, 512],
num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 9, 3]): #
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.embed_dims = embed_dims
# pyramid pooling ratios for each stage
pool_ratios = [[12,16,20,24], [6,8,10,12], [3,4,5,6], [1,2,3,4]]
self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=4, kernel_size=7, in_chans=in_chans,
embed_dim=embed_dims[0], overlap=True)
self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1], overlap=True)
self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2], overlap=True)
self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3], overlap=True)
self.d_convs1 = nn.ModuleList([nn.Conv2d(embed_dims[0], embed_dims[0], kernel_size=3, stride=1, padding=1, groups=embed_dims[0]) for temp in pool_ratios[0]])
self.d_convs2 = nn.ModuleList([nn.Conv2d(embed_dims[1], embed_dims[1], kernel_size=3, stride=1, padding=1, groups=embed_dims[1]) for temp in pool_ratios[1]])
self.d_convs3 = nn.ModuleList([nn.Conv2d(embed_dims[2], embed_dims[2], kernel_size=3, stride=1, padding=1, groups=embed_dims[2]) for temp in pool_ratios[2]])
self.d_convs4 = nn.ModuleList([nn.Conv2d(embed_dims[3], embed_dims[3], kernel_size=3, stride=1, padding=1, groups=embed_dims[3]) for temp in pool_ratios[3]])
# transformer encoder
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
ksize = 3
self.block1 = nn.ModuleList([Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[0])
for i in range(depths[0])])
cur += depths[0]
self.block2 = nn.ModuleList([Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[1])
for i in range(depths[1])])
cur += depths[1]
self.block3 = nn.ModuleList([Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[2])
for i in range(depths[2])])
cur += depths[2]
self.block4 = nn.ModuleList([Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[3])
for i in range(depths[3])])
# classification head
self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.gap = nn.AdaptiveAvgPool1d(1)
self.apply(self._init_weights)
#print(self)
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
# return {'pos_embed', 'cls_token'} # has pos_embed may be better
return {'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
# stage 1
x, (H, W) = self.patch_embed1(x)
for idx, blk in enumerate(self.block1):
x = blk(x, H, W, self.d_convs1)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# stage 2
x, (H, W) = self.patch_embed2(x)
for idx, blk in enumerate(self.block2):
x = blk(x, H, W, self.d_convs2)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# # stage 3
# x, (H, W) = self.patch_embed3(x)
# for idx, blk in enumerate(self.block3):
# x = blk(x, H, W, self.d_convs3)
# x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# # stage 4
# x, (H, W) = self.patch_embed4(x)
# for idx, blk in enumerate(self.block4):
# x = blk(x, H, W, self.d_convs4)
return x
def forward_features_for_fpn(self, x):
outs = []
B = x.shape[0]
# stage 1
x, (H, W) = self.patch_embed1(x)
for idx, blk in enumerate(self.block1):
x = blk(x, H, W, self.d_convs1)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
# stage 2
x, (H, W) = self.patch_embed2(x)
for idx, blk in enumerate(self.block2):
x = blk(x, H, W, self.d_convs2)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
x, (H, W) = self.patch_embed3(x)
for idx, blk in enumerate(self.block3):
x = blk(x, H, W, self.d_convs3)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
# stage 4
x, (H, W) = self.patch_embed4(x)
for idx, blk in enumerate(self.block4):
x = blk(x, H, W, self.d_convs4)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
return outs
def forward(self, x):
x = self.forward_features(x)
# x = torch.mean(x, dim=1)
# x = self.head(x)
return x
def forward_for_fpn(self, x):
return self.forward_features_for_fpn(x)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
@register_model
def p2t_tiny(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[48, 96, 240, 384], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 6, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_small(pretrained=True, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 9, 3], **kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_base(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_medium(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 384, 512], num_heads=[1, 2, 6, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 15, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_large(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 640], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3],
**kwargs)
model.default_cfg = _cfg()
return model