Spaces:
Build error
Build error
File size: 13,685 Bytes
67b395c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from argparse import ArgumentParser
from pathlib import Path
from typing import Dict, List, Optional, TextIO, Tuple
import torch
from PIL import Image, UnidentifiedImageError
from torch import Tensor
from torch.nn import Module, Parameter
from torch.nn.functional import relu, sigmoid
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from ram import get_transform
from ram.models import ram, tag2text
from ram.utils import build_openset_label_embedding, get_mAP, get_PR
device = "cuda" if torch.cuda.is_available() else "cpu"
def parse_args():
parser = ArgumentParser()
# model
parser.add_argument("--model-type",
type=str,
choices=("ram", "tag2text"),
required=True)
parser.add_argument("--checkpoint",
type=str,
required=True)
parser.add_argument("--backbone",
type=str,
choices=("swin_l", "swin_b"),
default=None,
help="If `None`, will judge from `--model-type`")
parser.add_argument("--open-set",
action="store_true",
help=(
"Treat all categories in the taglist file as "
"unseen and perform open-set classification. Only "
"works with RAM."
))
# data
parser.add_argument("--dataset",
type=str,
choices=(
"openimages_common_214",
"openimages_rare_200"
),
required=True)
parser.add_argument("--input-size",
type=int,
default=384)
# threshold
group = parser.add_mutually_exclusive_group()
group.add_argument("--threshold",
type=float,
default=None,
help=(
"Use custom threshold for all classes. Mutually "
"exclusive with `--threshold-file`. If both "
"`--threshold` and `--threshold-file` is `None`, "
"will use a default threshold setting."
))
group.add_argument("--threshold-file",
type=str,
default=None,
help=(
"Use custom class-wise thresholds by providing a "
"text file. Each line is a float-type threshold, "
"following the order of the tags in taglist file. "
"See `ram/data/ram_tag_list_threshold.txt` as an "
"example. Mutually exclusive with `--threshold`. "
"If both `--threshold` and `--threshold-file` is "
"`None`, will use default threshold setting."
))
# miscellaneous
parser.add_argument("--output-dir", type=str, default="./outputs")
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--num-workers", type=int, default=4)
args = parser.parse_args()
# post process and validity check
args.model_type = args.model_type.lower()
assert not (args.model_type == "tag2text" and args.open_set)
if args.backbone is None:
args.backbone = "swin_l" if args.model_type == "ram" else "swin_b"
return args
def load_dataset(
dataset: str,
model_type: str,
input_size: int,
batch_size: int,
num_workers: int
) -> Tuple[DataLoader, Dict]:
dataset_root = str(Path(__file__).resolve().parent / "datasets" / dataset)
img_root = dataset_root + "/imgs"
# Label system of tag2text contains duplicate tag texts, like
# "train" (noun) and "train" (verb). Therefore, for tag2text, we use
# `tagid` instead of `tag`.
if model_type == "ram":
tag_file = dataset_root + f"/{dataset}_ram_taglist.txt"
annot_file = dataset_root + f"/{dataset}_{model_type}_annots.txt"
else:
tag_file = dataset_root + f"/{dataset}_tag2text_tagidlist.txt"
annot_file = dataset_root + f"/{dataset}_{model_type}_idannots.txt"
with open(tag_file, "r", encoding="utf-8") as f:
taglist = [line.strip() for line in f]
with open(annot_file, "r", encoding="utf-8") as f:
imglist = [img_root + "/" + line.strip().split(",")[0] for line in f]
class _Dataset(Dataset):
def __init__(self):
self.transform = get_transform(input_size)
def __len__(self):
return len(imglist)
def __getitem__(self, index):
try:
img = Image.open(imglist[index])
except (OSError, FileNotFoundError, UnidentifiedImageError):
img = Image.new('RGB', (10, 10), 0)
print("Error loading image:", imglist[index])
return self.transform(img)
loader = DataLoader(
dataset=_Dataset(),
shuffle=False,
drop_last=False,
pin_memory=True,
batch_size=batch_size,
num_workers=num_workers
)
info = {
"taglist": taglist,
"imglist": imglist,
"annot_file": annot_file,
"img_root": img_root
}
return loader, info
def get_class_idxs(
model_type: str,
open_set: bool,
taglist: List[str]
) -> Optional[List[int]]:
"""Get indices of required categories in the label system."""
if model_type == "ram":
if not open_set:
model_taglist_file = "ram/data/ram_tag_list.txt"
with open(model_taglist_file, "r", encoding="utf-8") as f:
model_taglist = [line.strip() for line in f]
return [model_taglist.index(tag) for tag in taglist]
else:
return None
else: # for tag2text, we directly use tagid instead of text-form of tag.
# here tagid equals to tag index.
return [int(tag) for tag in taglist]
def load_thresholds(
threshold: Optional[float],
threshold_file: Optional[str],
model_type: str,
open_set: bool,
class_idxs: List[int],
num_classes: int,
) -> List[float]:
"""Decide what threshold(s) to use."""
if not threshold_file and not threshold: # use default
if model_type == "ram":
if not open_set: # use class-wise tuned thresholds
ram_threshold_file = "ram/data/ram_tag_list_threshold.txt"
with open(ram_threshold_file, "r", encoding="utf-8") as f:
idx2thre = {
idx: float(line.strip()) for idx, line in enumerate(f)
}
return [idx2thre[idx] for idx in class_idxs]
else:
return [0.5] * num_classes
else:
return [0.68] * num_classes
elif threshold_file:
with open(threshold_file, "r", encoding="utf-8") as f:
thresholds = [float(line.strip()) for line in f]
assert len(thresholds) == num_classes
return thresholds
else:
return [threshold] * num_classes
def gen_pred_file(
imglist: List[str],
tags: List[List[str]],
img_root: str,
pred_file: str
) -> None:
"""Generate text file of tag prediction results."""
with open(pred_file, "w", encoding="utf-8") as f:
for image, tag in zip(imglist, tags):
# should be relative to img_root to match the gt file.
s = str(Path(image).relative_to(img_root))
if tag:
s = s + "," + ",".join(tag)
f.write(s + "\n")
def load_ram(
backbone: str,
checkpoint: str,
input_size: int,
taglist: List[str],
open_set: bool,
class_idxs: List[int],
) -> Module:
model = ram(pretrained=checkpoint, image_size=input_size, vit=backbone)
# trim taglist for faster inference
if open_set:
print("Building tag embeddings ...")
label_embed, _ = build_openset_label_embedding(taglist)
model.label_embed = Parameter(label_embed.float())
else:
model.label_embed = Parameter(model.label_embed[class_idxs, :])
return model.to(device).eval()
def load_tag2text(
backbone: str,
checkpoint: str,
input_size: int
) -> Module:
model = tag2text(
pretrained=checkpoint,
image_size=input_size,
vit=backbone
)
return model.to(device).eval()
@torch.no_grad()
def forward_ram(model: Module, imgs: Tensor) -> Tensor:
image_embeds = model.image_proj(model.visual_encoder(imgs.to(device)))
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
label_embed = relu(model.wordvec_proj(model.label_embed)).unsqueeze(0)\
.repeat(imgs.shape[0], 1, 1)
tagging_embed, _ = model.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
return sigmoid(model.fc(tagging_embed).squeeze(-1))
@torch.no_grad()
def forward_tag2text(
model: Module,
class_idxs: List[int],
imgs: Tensor
) -> Tensor:
image_embeds = model.visual_encoder(imgs.to(device))
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
label_embed = model.label_embed.weight.unsqueeze(0)\
.repeat(imgs.shape[0], 1, 1)
tagging_embed, _ = model.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
return sigmoid(model.fc(tagging_embed))[:, class_idxs]
def print_write(f: TextIO, s: str):
print(s)
f.write(s + "\n")
if __name__ == "__main__":
args = parse_args()
# set up output paths
output_dir = args.output_dir
Path(output_dir).mkdir(parents=True, exist_ok=True)
pred_file, pr_file, ap_file, summary_file, logit_file = [
output_dir + "/" + name for name in
("pred.txt", "pr.txt", "ap.txt", "summary.txt", "logits.pth")
]
with open(summary_file, "w", encoding="utf-8") as f:
print_write(f, "****************")
for key in (
"model_type", "backbone", "checkpoint", "open_set",
"dataset", "input_size",
"threshold", "threshold_file",
"output_dir", "batch_size", "num_workers"
):
print_write(f, f"{key}: {getattr(args, key)}")
print_write(f, "****************")
# prepare data
loader, info = load_dataset(
dataset=args.dataset,
model_type=args.model_type,
input_size=args.input_size,
batch_size=args.batch_size,
num_workers=args.num_workers
)
taglist, imglist, annot_file, img_root = \
info["taglist"], info["imglist"], info["annot_file"], info["img_root"]
# get class idxs
class_idxs = get_class_idxs(
model_type=args.model_type,
open_set=args.open_set,
taglist=taglist
)
# set up threshold(s)
thresholds = load_thresholds(
threshold=args.threshold,
threshold_file=args.threshold_file,
model_type=args.model_type,
open_set=args.open_set,
class_idxs=class_idxs,
num_classes=len(taglist)
)
# inference
if Path(logit_file).is_file():
logits = torch.load(logit_file)
else:
# load model
if args.model_type == "ram":
model = load_ram(
backbone=args.backbone,
checkpoint=args.checkpoint,
input_size=args.input_size,
taglist=taglist,
open_set=args.open_set,
class_idxs=class_idxs
)
else:
model = load_tag2text(
backbone=args.backbone,
checkpoint=args.checkpoint,
input_size=args.input_size
)
# inference
logits = torch.empty(len(imglist), len(taglist))
pos = 0
for imgs in tqdm(loader, desc="inference"):
if args.model_type == "ram":
out = forward_ram(model, imgs)
else:
out = forward_tag2text(model, class_idxs, imgs)
bs = imgs.shape[0]
logits[pos:pos+bs, :] = out.cpu()
pos += bs
# save logits, making threshold-tuning super fast
torch.save(logits, logit_file)
# filter with thresholds
pred_tags = []
for scores in logits.tolist():
pred_tags.append([
taglist[i] for i, s in enumerate(scores) if s >= thresholds[i]
])
# generate result file
gen_pred_file(imglist, pred_tags, img_root, pred_file)
# evaluate and record
mAP, APs = get_mAP(logits.numpy(), annot_file, taglist)
CP, CR, Ps, Rs = get_PR(pred_file, annot_file, taglist)
with open(ap_file, "w", encoding="utf-8") as f:
f.write("Tag,AP\n")
for tag, AP in zip(taglist, APs):
f.write(f"{tag},{AP*100.0:.2f}\n")
with open(pr_file, "w", encoding="utf-8") as f:
f.write("Tag,Precision,Recall\n")
for tag, P, R in zip(taglist, Ps, Rs):
f.write(f"{tag},{P*100.0:.2f},{R*100.0:.2f}\n")
with open(summary_file, "w", encoding="utf-8") as f:
print_write(f, f"mAP: {mAP*100.0}")
print_write(f, f"CP: {CP*100.0}")
print_write(f, f"CR: {CR*100.0}")
|