Spaces:
Runtime error
Runtime error
updates
Browse files- app.py +39 -8
- model_info_cache.pkl +2 -2
- model_size_cache.pkl +3 -0
- requirements.txt +1 -0
- src/assets/text_content.py +1 -1
- src/display_models/get_model_metadata.py +27 -9
app.py
CHANGED
@@ -114,6 +114,8 @@ leaderboard_df = original_df.copy()
|
|
114 |
pending_eval_queue_df,
|
115 |
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
|
116 |
|
|
|
|
|
117 |
|
118 |
## INTERACTION FUNCTIONS
|
119 |
def add_new_eval(
|
@@ -216,8 +218,8 @@ def change_tab(query_param: str):
|
|
216 |
|
217 |
|
218 |
# Searching and filtering
|
219 |
-
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, size_query: list, show_deleted: bool, query: str):
|
220 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, show_deleted)
|
221 |
if query != "":
|
222 |
filtered_df = search_table(filtered_df, query)
|
223 |
df = select_columns(filtered_df, columns)
|
@@ -249,7 +251,7 @@ NUMERIC_INTERVALS = {
|
|
249 |
}
|
250 |
|
251 |
def filter_models(
|
252 |
-
df: pd.DataFrame, type_query: list, size_query: list, show_deleted: bool
|
253 |
) -> pd.DataFrame:
|
254 |
# Show all models
|
255 |
if show_deleted:
|
@@ -259,6 +261,7 @@ def filter_models(
|
|
259 |
|
260 |
type_emoji = [t[0] for t in type_query]
|
261 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
262 |
|
263 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
264 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
@@ -277,6 +280,12 @@ with demo:
|
|
277 |
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
278 |
with gr.Row():
|
279 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
with gr.Row():
|
281 |
shown_columns = gr.CheckboxGroup(
|
282 |
choices=[
|
@@ -310,11 +319,6 @@ with demo:
|
|
310 |
value=True, label="Show gated/private/deleted models", interactive=True
|
311 |
)
|
312 |
with gr.Column(min_width=320):
|
313 |
-
search_bar = gr.Textbox(
|
314 |
-
placeholder="π Search for your model and press ENTER...",
|
315 |
-
show_label=False,
|
316 |
-
elem_id="search-bar",
|
317 |
-
)
|
318 |
with gr.Box(elem_id="box-filter"):
|
319 |
filter_columns_type = gr.CheckboxGroup(
|
320 |
label="Model types",
|
@@ -333,6 +337,13 @@ with demo:
|
|
333 |
interactive=True,
|
334 |
elem_id="filter-columns-type",
|
335 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
filter_columns_size = gr.CheckboxGroup(
|
337 |
label="Model sizes",
|
338 |
choices=list(NUMERIC_INTERVALS.keys()),
|
@@ -375,6 +386,7 @@ with demo:
|
|
375 |
leaderboard_table,
|
376 |
shown_columns,
|
377 |
filter_columns_type,
|
|
|
378 |
filter_columns_size,
|
379 |
deleted_models_visibility,
|
380 |
search_bar,
|
@@ -388,6 +400,7 @@ with demo:
|
|
388 |
leaderboard_table,
|
389 |
shown_columns,
|
390 |
filter_columns_type,
|
|
|
391 |
filter_columns_size,
|
392 |
deleted_models_visibility,
|
393 |
search_bar,
|
@@ -402,6 +415,22 @@ with demo:
|
|
402 |
leaderboard_table,
|
403 |
shown_columns,
|
404 |
filter_columns_type,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
filter_columns_size,
|
406 |
deleted_models_visibility,
|
407 |
search_bar,
|
@@ -416,6 +445,7 @@ with demo:
|
|
416 |
leaderboard_table,
|
417 |
shown_columns,
|
418 |
filter_columns_type,
|
|
|
419 |
filter_columns_size,
|
420 |
deleted_models_visibility,
|
421 |
search_bar,
|
@@ -430,6 +460,7 @@ with demo:
|
|
430 |
leaderboard_table,
|
431 |
shown_columns,
|
432 |
filter_columns_type,
|
|
|
433 |
filter_columns_size,
|
434 |
deleted_models_visibility,
|
435 |
search_bar,
|
|
|
114 |
pending_eval_queue_df,
|
115 |
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
|
116 |
|
117 |
+
print(leaderboard_df["Precision"].unique())
|
118 |
+
|
119 |
|
120 |
## INTERACTION FUNCTIONS
|
121 |
def add_new_eval(
|
|
|
218 |
|
219 |
|
220 |
# Searching and filtering
|
221 |
+
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
|
222 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
223 |
if query != "":
|
224 |
filtered_df = search_table(filtered_df, query)
|
225 |
df = select_columns(filtered_df, columns)
|
|
|
251 |
}
|
252 |
|
253 |
def filter_models(
|
254 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
255 |
) -> pd.DataFrame:
|
256 |
# Show all models
|
257 |
if show_deleted:
|
|
|
261 |
|
262 |
type_emoji = [t[0] for t in type_query]
|
263 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
264 |
+
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
|
265 |
|
266 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
267 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
280 |
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
281 |
with gr.Row():
|
282 |
with gr.Column():
|
283 |
+
with gr.Row():
|
284 |
+
search_bar = gr.Textbox(
|
285 |
+
placeholder=" π Search for your model and press ENTER...",
|
286 |
+
show_label=False,
|
287 |
+
elem_id="search-bar",
|
288 |
+
)
|
289 |
with gr.Row():
|
290 |
shown_columns = gr.CheckboxGroup(
|
291 |
choices=[
|
|
|
319 |
value=True, label="Show gated/private/deleted models", interactive=True
|
320 |
)
|
321 |
with gr.Column(min_width=320):
|
|
|
|
|
|
|
|
|
|
|
322 |
with gr.Box(elem_id="box-filter"):
|
323 |
filter_columns_type = gr.CheckboxGroup(
|
324 |
label="Model types",
|
|
|
337 |
interactive=True,
|
338 |
elem_id="filter-columns-type",
|
339 |
)
|
340 |
+
filter_columns_precision = gr.CheckboxGroup(
|
341 |
+
label="Precision",
|
342 |
+
choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
343 |
+
value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
344 |
+
interactive=True,
|
345 |
+
elem_id="filter-columns-precision",
|
346 |
+
)
|
347 |
filter_columns_size = gr.CheckboxGroup(
|
348 |
label="Model sizes",
|
349 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
|
386 |
leaderboard_table,
|
387 |
shown_columns,
|
388 |
filter_columns_type,
|
389 |
+
filter_columns_precision,
|
390 |
filter_columns_size,
|
391 |
deleted_models_visibility,
|
392 |
search_bar,
|
|
|
400 |
leaderboard_table,
|
401 |
shown_columns,
|
402 |
filter_columns_type,
|
403 |
+
filter_columns_precision,
|
404 |
filter_columns_size,
|
405 |
deleted_models_visibility,
|
406 |
search_bar,
|
|
|
415 |
leaderboard_table,
|
416 |
shown_columns,
|
417 |
filter_columns_type,
|
418 |
+
filter_columns_precision,
|
419 |
+
filter_columns_size,
|
420 |
+
deleted_models_visibility,
|
421 |
+
search_bar,
|
422 |
+
],
|
423 |
+
leaderboard_table,
|
424 |
+
queue=True,
|
425 |
+
)
|
426 |
+
filter_columns_precision.change(
|
427 |
+
update_table,
|
428 |
+
[
|
429 |
+
hidden_leaderboard_table_for_search,
|
430 |
+
leaderboard_table,
|
431 |
+
shown_columns,
|
432 |
+
filter_columns_type,
|
433 |
+
filter_columns_precision,
|
434 |
filter_columns_size,
|
435 |
deleted_models_visibility,
|
436 |
search_bar,
|
|
|
445 |
leaderboard_table,
|
446 |
shown_columns,
|
447 |
filter_columns_type,
|
448 |
+
filter_columns_precision,
|
449 |
filter_columns_size,
|
450 |
deleted_models_visibility,
|
451 |
search_bar,
|
|
|
460 |
leaderboard_table,
|
461 |
shown_columns,
|
462 |
filter_columns_type,
|
463 |
+
filter_columns_precision,
|
464 |
filter_columns_size,
|
465 |
deleted_models_visibility,
|
466 |
search_bar,
|
model_info_cache.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4256b2cbebd45f47d6d6316f299d760c3b3e50e4a41281c69ae44ade57bfc38c
|
3 |
+
size 3015063
|
model_size_cache.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd4b59351406f51675c364cf95779063458dcf3e2653239c9f4e024ed16e23f1
|
3 |
+
size 58618
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
aiofiles==23.1.0
|
2 |
aiohttp==3.8.4
|
3 |
aiosignal==1.3.1
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
aiofiles==23.1.0
|
3 |
aiohttp==3.8.4
|
4 |
aiosignal==1.3.1
|
src/assets/text_content.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from src.display_models.model_metadata_type import ModelType
|
2 |
|
3 |
TITLE = """<h1 align="center" id="space-title">π€ Open LLM Leaderboard</h1>
|
4 |
-
<h2 align="center" id="space-title">This space displays GPT-4 and GPT-3.5 scores from
|
5 |
|
6 |
INTRODUCTION_TEXT = """
|
7 |
π The π€ Open LLM Leaderboard aims to track, rank and evaluate open LLMs and chatbots.
|
|
|
1 |
from src.display_models.model_metadata_type import ModelType
|
2 |
|
3 |
TITLE = """<h1 align="center" id="space-title">π€ Open LLM Leaderboard</h1>
|
4 |
+
<h2 align="center" id="space-title">This space displays GPT-4 and GPT-3.5 scores from <a href="https://cdn.openai.com/papers/gpt-4.pdf" target="_blank" rel="noopener noreferrer">techinal paper</a></h2>"""
|
5 |
|
6 |
INTRODUCTION_TEXT = """
|
7 |
π The π€ Open LLM Leaderboard aims to track, rank and evaluate open LLMs and chatbots.
|
src/display_models/get_model_metadata.py
CHANGED
@@ -8,6 +8,8 @@ from typing import List
|
|
8 |
import huggingface_hub
|
9 |
from huggingface_hub import HfApi
|
10 |
from tqdm import tqdm
|
|
|
|
|
11 |
|
12 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
13 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
@@ -21,8 +23,13 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
21 |
try:
|
22 |
with open("model_info_cache.pkl", "rb") as f:
|
23 |
model_info_cache = pickle.load(f)
|
24 |
-
except EOFError:
|
25 |
model_info_cache = {}
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
for model_data in tqdm(leaderboard_data):
|
28 |
model_name = model_data["model_name_for_query"]
|
@@ -37,16 +44,21 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
37 |
print("Repo not found!", model_name)
|
38 |
model_data[AutoEvalColumn.license.name] = None
|
39 |
model_data[AutoEvalColumn.likes.name] = None
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
44 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
45 |
-
|
|
|
|
|
46 |
|
47 |
# save cache to disk in pickle format
|
48 |
with open("model_info_cache.pkl", "wb") as f:
|
49 |
pickle.dump(model_info_cache, f)
|
|
|
|
|
50 |
|
51 |
|
52 |
def get_model_license(model_info):
|
@@ -69,11 +81,17 @@ def get_model_size(model_name, model_info):
|
|
69 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
70 |
except AttributeError:
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
def get_model_type(leaderboard_data: List[dict]):
|
|
|
8 |
import huggingface_hub
|
9 |
from huggingface_hub import HfApi
|
10 |
from tqdm import tqdm
|
11 |
+
from transformers import AutoModel, AutoConfig
|
12 |
+
from accelerate import init_empty_weights
|
13 |
|
14 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
15 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
|
23 |
try:
|
24 |
with open("model_info_cache.pkl", "rb") as f:
|
25 |
model_info_cache = pickle.load(f)
|
26 |
+
except (EOFError, FileNotFoundError):
|
27 |
model_info_cache = {}
|
28 |
+
try:
|
29 |
+
with open("model_size_cache.pkl", "rb") as f:
|
30 |
+
model_size_cache = pickle.load(f)
|
31 |
+
except (EOFError, FileNotFoundError):
|
32 |
+
model_size_cache = {}
|
33 |
|
34 |
for model_data in tqdm(leaderboard_data):
|
35 |
model_name = model_data["model_name_for_query"]
|
|
|
44 |
print("Repo not found!", model_name)
|
45 |
model_data[AutoEvalColumn.license.name] = None
|
46 |
model_data[AutoEvalColumn.likes.name] = None
|
47 |
+
if model_name not in model_size_cache:
|
48 |
+
model_size_cache[model_name] = get_model_size(model_name, None)
|
49 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
50 |
|
51 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
52 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
53 |
+
if model_name not in model_size_cache:
|
54 |
+
model_size_cache[model_name] = get_model_size(model_name, model_info)
|
55 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
56 |
|
57 |
# save cache to disk in pickle format
|
58 |
with open("model_info_cache.pkl", "wb") as f:
|
59 |
pickle.dump(model_info_cache, f)
|
60 |
+
with open("model_size_cache.pkl", "wb") as f:
|
61 |
+
pickle.dump(model_size_cache, f)
|
62 |
|
63 |
|
64 |
def get_model_license(model_info):
|
|
|
81 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
82 |
except AttributeError:
|
83 |
try:
|
84 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False)
|
85 |
+
with init_empty_weights():
|
86 |
+
model = AutoModel.from_config(config, trust_remote_code=False)
|
87 |
+
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
|
88 |
+
except (EnvironmentError, ValueError): # model config not found, likely private
|
89 |
+
try:
|
90 |
+
size_match = re.search(size_pattern, model_name.lower())
|
91 |
+
size = size_match.group(0)
|
92 |
+
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
93 |
+
except AttributeError:
|
94 |
+
return 0
|
95 |
|
96 |
|
97 |
def get_model_type(leaderboard_data: List[dict]):
|