Initial commit
Browse files- .gitignore +4 -0
- README.md +15 -7
- app.py +268 -0
- citations.py +53 -0
- examples.py +4 -0
- img/indeep_logo_white_contour.png +0 -0
- img/inseq_logo_white_contour.png +0 -0
- img/lxt_logo.png +0 -0
- img/mirage_logo_white_contour.png +0 -0
- img/rug_logo_white_contour.png +0 -0
- requirements.txt +5 -0
- style.py +37 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
*.html
|
3 |
+
*.json
|
4 |
+
.DS_Store
|
README.md
CHANGED
@@ -1,13 +1,21 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
---
|
2 |
+
title: MIRAGE
|
3 |
+
emoji: 🌴
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.42.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
+
short_description: Model Internals to generate RAG citations
|
12 |
+
tags:
|
13 |
+
- answer-attribution
|
14 |
+
- interpretability
|
15 |
+
- context-usage
|
16 |
+
- language-modeling
|
17 |
+
- arxiv:2406.13663
|
18 |
+
- arxiv:2402.05602
|
19 |
---
|
20 |
|
21 |
+
Demo for the paper [Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation](https://arxiv.org/abs/2406.13663) using the AttnLRP method from [AttnLRP: Attention-Aware Layer-Wise Relevance Propagation for Transformers](https://arxiv.org/abs/2402.05602).
|
app.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import bm25s
|
4 |
+
import spaces
|
5 |
+
import gradio as gr
|
6 |
+
import gradio_iframe
|
7 |
+
from bm25s.hf import BM25HF
|
8 |
+
from rerankers import Reranker
|
9 |
+
|
10 |
+
from inseq import register_step_function, load_model
|
11 |
+
from inseq.attr import StepFunctionArgs
|
12 |
+
from inseq.commands.attribute_context import visualize_attribute_context
|
13 |
+
from inseq.utils.contrast_utils import _setup_contrast_args
|
14 |
+
from lxt.models.llama import LlamaForCausalLM, attnlrp
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
from lxt.functional import softmax, add2, mul2
|
17 |
+
from inseq.commands.attribute_context.attribute_context import attribute_context_with_model, AttributeContextArgs
|
18 |
+
|
19 |
+
from style import custom_css
|
20 |
+
from citations import pecore_citation, mirage_citation, inseq_citation, lxt_citation
|
21 |
+
from examples import examples
|
22 |
+
|
23 |
+
model_id = "HuggingFaceTB/SmolLM-360M-Instruct"
|
24 |
+
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
|
25 |
+
retriever = BM25HF.load_from_hub("xhluca/bm25s-nq-index", load_corpus=True, mmap=True)
|
26 |
+
hf_model = LlamaForCausalLM.from_pretrained(model_id)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
28 |
+
attnlrp.register(hf_model)
|
29 |
+
model = load_model(hf_model, "saliency", tokenizer=tokenizer)
|
30 |
+
# Needed since the <|im_start|> token is also the BOS
|
31 |
+
model.bos_token = "<|endoftext|>"
|
32 |
+
model.bos_token_id = 0
|
33 |
+
|
34 |
+
|
35 |
+
def lxt_probability_fn(args: StepFunctionArgs):
|
36 |
+
logits = args.attribution_model.output2logits(args.forward_output)
|
37 |
+
target_ids = args.target_ids.reshape(logits.shape[0], 1).to(logits.device)
|
38 |
+
logits = softmax(logits, dim=-1)
|
39 |
+
return logits.gather(-1, target_ids).squeeze(-1)
|
40 |
+
|
41 |
+
def lxt_contrast_prob_fn(
|
42 |
+
args: StepFunctionArgs,
|
43 |
+
contrast_sources = None,
|
44 |
+
contrast_targets = None,
|
45 |
+
contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
|
46 |
+
contrast_force_inputs: bool = False,
|
47 |
+
skip_special_tokens: bool = False,
|
48 |
+
):
|
49 |
+
c_args = _setup_contrast_args(
|
50 |
+
args,
|
51 |
+
contrast_sources=contrast_sources,
|
52 |
+
contrast_targets=contrast_targets,
|
53 |
+
contrast_targets_alignments=contrast_targets_alignments,
|
54 |
+
contrast_force_inputs=contrast_force_inputs,
|
55 |
+
skip_special_tokens=skip_special_tokens,
|
56 |
+
)
|
57 |
+
return lxt_probability_fn(c_args)
|
58 |
+
|
59 |
+
def lxt_contrast_prob_diff_fn(
|
60 |
+
args: StepFunctionArgs,
|
61 |
+
contrast_sources = None,
|
62 |
+
contrast_targets = None,
|
63 |
+
contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
|
64 |
+
contrast_force_inputs: bool = False,
|
65 |
+
skip_special_tokens: bool = False,
|
66 |
+
):
|
67 |
+
model_probs = lxt_probability_fn(args)
|
68 |
+
contrast_probs = lxt_contrast_prob_fn(
|
69 |
+
args=args,
|
70 |
+
contrast_sources=contrast_sources,
|
71 |
+
contrast_targets=contrast_targets,
|
72 |
+
contrast_targets_alignments=contrast_targets_alignments,
|
73 |
+
contrast_force_inputs=contrast_force_inputs,
|
74 |
+
skip_special_tokens=skip_special_tokens,
|
75 |
+
).to(model_probs.device)
|
76 |
+
return add2(model_probs, mul2(contrast_probs, -1))
|
77 |
+
|
78 |
+
|
79 |
+
def set_interactive_settings(rag_setting, retrieve_k, top_k, custom_context):
|
80 |
+
if rag_setting in ("Retrieve with BM25", "Rerank with ColBERT"):
|
81 |
+
return gr.Slider(interactive=True), gr.Slider(interactive=True), gr.Textbox(placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.", interactive=False)
|
82 |
+
elif rag_setting == "Use Custom Context":
|
83 |
+
return gr.Slider(interactive=False), gr.Slider(interactive=False), gr.Textbox(placeholder="Insert a custom context...", interactive=True)
|
84 |
+
|
85 |
+
@spaces.GPU()
|
86 |
+
def generate(query, max_new_tokens, top_p, temperature, retrieve_k, top_k, rag_setting, custom_context, model_size, progress=gr.Progress()):
|
87 |
+
global model, model_id
|
88 |
+
if rag_setting == "Use Custom Context":
|
89 |
+
docs = custom_context.split("\n\n")
|
90 |
+
progress(0.1, desc="Using custom context...")
|
91 |
+
else:
|
92 |
+
if not query:
|
93 |
+
raise gr.Error("Please enter a query.")
|
94 |
+
progress(0, desc="Retrieving with BM25...")
|
95 |
+
q = bm25s.tokenize(query)
|
96 |
+
results = retriever.retrieve(q, k=retrieve_k)
|
97 |
+
if rag_setting == "Rerank with ColBERT":
|
98 |
+
progress(0.1, desc="Reranking with ColBERT...")
|
99 |
+
docs = [x["text"] for x in results.documents[0]]
|
100 |
+
out = ranker.rank(query=query, docs=docs)
|
101 |
+
docs = [out.results[i].document.text for i in range(top_k)]
|
102 |
+
else:
|
103 |
+
docs = [results.documents[0][i]["text"] for i in range(top_k)]
|
104 |
+
docs = [re.sub(r"\[\d+\]", "", doc) for doc in docs]
|
105 |
+
curr_model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
|
106 |
+
if model is None or model.model_name != curr_model_id:
|
107 |
+
progress(0.2, desc="Loading model...")
|
108 |
+
model_id = curr_model_id
|
109 |
+
hf_model = LlamaForCausalLM.from_pretrained(model_id)
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
111 |
+
attnlrp.register(hf_model)
|
112 |
+
model = load_model(hf_model, "saliency", tokenizer=tokenizer)
|
113 |
+
progress(0.3, desc="Attributing with LXT...")
|
114 |
+
lm_rag_prompting_example = AttributeContextArgs(
|
115 |
+
model_name_or_path=model_id,
|
116 |
+
input_context_text="\n\n".join(docs),
|
117 |
+
input_current_text=query,
|
118 |
+
output_template="{current}",
|
119 |
+
attributed_fn="lxt_contrast_prob_diff",
|
120 |
+
input_template="<|im_start|>user\n### Context\n{context}\n\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n",
|
121 |
+
contextless_input_current_text="<|im_start|>user\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n",
|
122 |
+
attribution_method="saliency",
|
123 |
+
show_viz=False,
|
124 |
+
show_intermediate_outputs=False,
|
125 |
+
context_sensitivity_std_threshold=1,
|
126 |
+
decoder_input_output_separator=" ",
|
127 |
+
special_tokens_to_keep=["<|im_start|>", "<|endoftext|>"],
|
128 |
+
generation_kwargs={"max_new_tokens": max_new_tokens, "top_p": top_p, "temperature": temperature},
|
129 |
+
attribution_aggregators=["sum"],
|
130 |
+
rescale_attributions=True,
|
131 |
+
save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
|
132 |
+
viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
|
133 |
+
)
|
134 |
+
out = attribute_context_with_model(lm_rag_prompting_example, model)
|
135 |
+
html = visualize_attribute_context(out, show_viz=False, return_html=True)
|
136 |
+
return [
|
137 |
+
gradio_iframe.iFrame(html, height=500, visible=True),
|
138 |
+
gr.DownloadButton(
|
139 |
+
label="📂 Download output",
|
140 |
+
value=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
|
141 |
+
visible=True,
|
142 |
+
),
|
143 |
+
gr.DownloadButton(
|
144 |
+
label="🔍 Download HTML",
|
145 |
+
value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
|
146 |
+
visible=True,
|
147 |
+
)
|
148 |
+
]
|
149 |
+
|
150 |
+
|
151 |
+
register_step_function(lxt_contrast_prob_diff_fn, "lxt_contrast_prob_diff", overwrite=True)
|
152 |
+
|
153 |
+
|
154 |
+
with gr.Blocks(css=custom_css) as demo:
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column(min_width=500):
|
157 |
+
gr.HTML(f'<h1><img src="file/img/mirage_logo_white_contour.png" width=300px /></h1>')
|
158 |
+
text = gr.Markdown(
|
159 |
+
"This demo showcases an end-to-end usage of model internals for RAG answer attribution with the <a href='https://openreview.net/forum?id=XTHfNGI3zT' target='_blank'>PECoRe</a> framework, as described in our <a href='https://arxiv.org/abs/2406.13663' target='_blank'>MIRAGE</a> paper.<br>"
|
160 |
+
"Insert a query to retrieve relevant contexts, generate an answer and attribute its context-sensitive components. An interactive <a href='https://github.com/google-deepmind/treescope' target='_blank'>Treescope</a> visualization will appear in the green square.<br>"
|
161 |
+
"📋 <i>Retrieval is performed on <a href='https://huggingface.co/datasets/google-research-datasets/natural_questions' target='_blank'>Natural Questions</a> using <a href='https://github.com/xhluca/bm25s' target='_blank'>BM25S</a>, with optional reranking via <a href='https://huggingface.co/answerdotai/answerai-colbert-small-v1' target='_blank'>ColBERT</a>."
|
162 |
+
" <a href='https://huggingface.co/blog/smollm' target='_blank'>SmolLM</a> models are used for generation, while <a href='https://github.com/inseq-team/inseq' target='_blank'>Inseq</a> and <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'>LXT</a> are used for attribution.</i><br>"
|
163 |
+
"➡️ <i>For more details, see also our <a href='https://huggingface.co/spaces/gsarti/pecore' target='_blank'>PECoRe Demo</a>",
|
164 |
+
)
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column():
|
167 |
+
query = gr.Textbox(
|
168 |
+
placeholder="Insert a query for the language model...",
|
169 |
+
label="Model query",
|
170 |
+
interactive=True,
|
171 |
+
lines=2,
|
172 |
+
)
|
173 |
+
attribute_input_examples = gr.Examples(
|
174 |
+
examples,
|
175 |
+
inputs=[query],
|
176 |
+
examples_per_page=2,
|
177 |
+
)
|
178 |
+
with gr.Accordion("⚙️ Parameters", open=False):
|
179 |
+
with gr.Row():
|
180 |
+
model_size = gr.Radio(
|
181 |
+
["135M", "360M", "1.7B"],
|
182 |
+
value="360M",
|
183 |
+
label="Model size",
|
184 |
+
interactive=True
|
185 |
+
)
|
186 |
+
with gr.Row():
|
187 |
+
rag_setting = gr.Radio(
|
188 |
+
["Retrieve with BM25", "Rerank with ColBERT", "Use Custom Context"],
|
189 |
+
value="Rerank with ColBERT",
|
190 |
+
label="Mode",
|
191 |
+
interactive=True
|
192 |
+
)
|
193 |
+
with gr.Row():
|
194 |
+
retrieve_k = gr.Slider(1, 500, value=100, step=1, label="# Docs to Retrieve", interactive=True)
|
195 |
+
top_k = gr.Slider(1, 10, value=3, step=1, label="# Docs in Context", interactive=True)
|
196 |
+
custom_context = gr.Textbox(
|
197 |
+
placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
|
198 |
+
label="Custom context",
|
199 |
+
interactive=False,
|
200 |
+
lines=4,
|
201 |
+
)
|
202 |
+
with gr.Row():
|
203 |
+
max_new_tokens = gr.Slider(0, 500, value=50, step=5.0, label="Max new tokens", interactive=True)
|
204 |
+
top_p = gr.Slider(0, 1, value=1, step=0.01, label="Top P", interactive=True)
|
205 |
+
temperature = gr.Slider(0, 1, value=0, step=0.01, label="Temperature", interactive=True)
|
206 |
+
with gr.Accordion("📝 Citation", open=False):
|
207 |
+
gr.Markdown("Using PECoRe for model internals-based RAG answer attribution is discussed in:")
|
208 |
+
gr.Code(mirage_citation, interactive=False, label="MIRAGE (Qi, Sarti et al., 2024)")
|
209 |
+
gr.Markdown("To refer to the original PECoRe paper, cite:")
|
210 |
+
gr.Code(pecore_citation, interactive=False, label="PECoRe (Sarti et al., 2024)")
|
211 |
+
gr.Markdown("The Inseq implementation used in this work (<a href=\"https://inseq.org/en/latest/main_classes/cli.html#attribute-context\"><code>inseq attribute-context</code></a>, including this demo) can be cited with:")
|
212 |
+
gr.Code(inseq_citation, interactive=False, label="Inseq (Sarti et al., 2023)")
|
213 |
+
gr.Markdown("The AttnLRP attribution method used in this demo via the LXT library can be cited with:")
|
214 |
+
gr.Code(lxt_citation, interactive=False, label="AttnLRP (Achtibat et al., 2024)")
|
215 |
+
btn = gr.Button("Submit", variant="primary")
|
216 |
+
with gr.Column():
|
217 |
+
attribute_context_out = gradio_iframe.iFrame(height=400, visible=True)
|
218 |
+
with gr.Row(equal_height=True):
|
219 |
+
download_output_file_button = gr.DownloadButton(
|
220 |
+
"📂 Download output",
|
221 |
+
visible=False,
|
222 |
+
)
|
223 |
+
download_output_html_button = gr.DownloadButton(
|
224 |
+
"🔍 Download HTML",
|
225 |
+
visible=False,
|
226 |
+
value=os.path.join(
|
227 |
+
os.path.dirname(__file__), "outputs/output.html"
|
228 |
+
),
|
229 |
+
)
|
230 |
+
with gr.Row(elem_classes="footer-container"):
|
231 |
+
with gr.Column():
|
232 |
+
gr.Markdown("""<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a> <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'><img src="file/img/lxt_logo.png" width=150px /></a></div>""")
|
233 |
+
with gr.Column():
|
234 |
+
with gr.Row(elem_classes="footer-custom-block"):
|
235 |
+
with gr.Column(scale=0.30, min_width=150):
|
236 |
+
gr.Markdown("""<b>Built by <a href="https://gsarti.com" target="_blank">Gabriele Sarti</a><br> with the support of</b>""")
|
237 |
+
with gr.Column(scale=0.30, min_width=120):
|
238 |
+
gr.Markdown("""<a href='https://www.rug.nl/research/clcg/research/cl/' target='_blank'><img src="file/img/rug_logo_white_contour.png" width=170px /></a>""")
|
239 |
+
with gr.Column(scale=0.30, min_width=120):
|
240 |
+
gr.Markdown("""<a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=100px /></a>""")
|
241 |
+
|
242 |
+
rag_setting.change(
|
243 |
+
fn=set_interactive_settings,
|
244 |
+
inputs=[rag_setting, retrieve_k, top_k, custom_context],
|
245 |
+
outputs=[retrieve_k, top_k, custom_context],
|
246 |
+
)
|
247 |
+
|
248 |
+
btn.click(
|
249 |
+
fn=generate,
|
250 |
+
inputs=[
|
251 |
+
query,
|
252 |
+
max_new_tokens,
|
253 |
+
top_p,
|
254 |
+
temperature,
|
255 |
+
retrieve_k,
|
256 |
+
top_k,
|
257 |
+
rag_setting,
|
258 |
+
custom_context,
|
259 |
+
model_size,
|
260 |
+
],
|
261 |
+
outputs=[
|
262 |
+
attribute_context_out,
|
263 |
+
download_output_file_button,
|
264 |
+
download_output_html_button,
|
265 |
+
]
|
266 |
+
)
|
267 |
+
|
268 |
+
demo.queue(api_open=False, max_size=20).launch(allowed_paths=["img/", "outputs/"], show_api=False)
|
citations.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pecore_citation = """@inproceedings{sarti-etal-2023-quantifying,
|
2 |
+
title = "Quantifying the Plausibility of Context Reliance in Neural Machine Translation",
|
3 |
+
author = "Sarti, Gabriele and
|
4 |
+
Chrupa{\l}a, Grzegorz and
|
5 |
+
Nissim, Malvina and
|
6 |
+
Bisazza, Arianna",
|
7 |
+
booktitle = "The Twelfth International Conference on Learning Representations (ICLR 2024)",
|
8 |
+
month = may,
|
9 |
+
year = "2024",
|
10 |
+
address = "Vienna, Austria",
|
11 |
+
publisher = "OpenReview",
|
12 |
+
url = "https://openreview.net/forum?id=XTHfNGI3zT"
|
13 |
+
}"""
|
14 |
+
|
15 |
+
inseq_citation = """@inproceedings{sarti-etal-2023-inseq,
|
16 |
+
title = "Inseq: An Interpretability Toolkit for Sequence Generation Models",
|
17 |
+
author = "Sarti, Gabriele and
|
18 |
+
Feldhus, Nils and
|
19 |
+
Sickert, Ludwig and
|
20 |
+
van der Wal, Oskar and
|
21 |
+
Nissim, Malvina and
|
22 |
+
Bisazza, Arianna",
|
23 |
+
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
|
24 |
+
month = jul,
|
25 |
+
year = "2023",
|
26 |
+
address = "Toronto, Canada",
|
27 |
+
publisher = "Association for Computational Linguistics",
|
28 |
+
url = "https://aclanthology.org/2023.acl-demo.40",
|
29 |
+
pages = "421--435",
|
30 |
+
}"""
|
31 |
+
|
32 |
+
mirage_citation = """@article{qi-sarti-etal-2024-mirage,
|
33 |
+
title = "Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation",
|
34 |
+
author = "Qi, Jirui and Sarti, Gabriele and Fern{\'a}ndez, Raquel and Bisazza, Arianna",
|
35 |
+
journal = "ArXiv",
|
36 |
+
month = jun,
|
37 |
+
year = "2024",
|
38 |
+
volume = {abs/2406.13663},
|
39 |
+
url = {https://arxiv.org/abs/2406.13663},
|
40 |
+
}"""
|
41 |
+
|
42 |
+
lxt_citation = """@inproceedings{achtibat-etal-2024-attnlrp,
|
43 |
+
title = {{A}ttn{LRP}: Attention-Aware Layer-Wise Relevance Propagation for Transformers},
|
44 |
+
author = {Achtibat, Reduan and Hatefi, Sayed Mohammad Vakilzadeh and Dreyer, Maximilian and Jain, Aakriti and Wiegand, Thomas and Lapuschkin, Sebastian and Samek, Wojciech},
|
45 |
+
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
|
46 |
+
pages = {135--168},
|
47 |
+
year = {2024},
|
48 |
+
editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix},
|
49 |
+
volume = {235},
|
50 |
+
series = {Proceedings of Machine Learning Research},
|
51 |
+
month = {21--27 Jul},
|
52 |
+
publisher = {PMLR}
|
53 |
+
}"""
|
examples.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
examples = [
|
2 |
+
"Who was the greek gooddess of spring growth?",
|
3 |
+
"When was the heir to the throne of the United Kingdom born?",
|
4 |
+
]
|
img/indeep_logo_white_contour.png
ADDED
img/inseq_logo_white_contour.png
ADDED
img/lxt_logo.png
ADDED
img/mirage_logo_white_contour.png
ADDED
img/rug_logo_white_contour.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
git+https://github.com/inseq-team/inseq.git@main
|
3 |
+
bm25s
|
4 |
+
rerankers[transformers]
|
5 |
+
git+https://github.com/rachtibat/LRP-eXplains-Transformers
|
style.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
h1 > img {
|
3 |
+
text-align: center;
|
4 |
+
display: block;
|
5 |
+
margin-bottom: 0;
|
6 |
+
font-size: 1.7em;
|
7 |
+
}
|
8 |
+
|
9 |
+
iframe {
|
10 |
+
overflow: scroll;
|
11 |
+
border: 2px solid green;
|
12 |
+
}
|
13 |
+
|
14 |
+
.summary-label {
|
15 |
+
display: inline;
|
16 |
+
}
|
17 |
+
.prose a:visited {
|
18 |
+
color: var(--link-text-color);
|
19 |
+
}
|
20 |
+
.footer-container {
|
21 |
+
align-items: center;
|
22 |
+
}
|
23 |
+
.footer-custom-block {
|
24 |
+
display: flex;
|
25 |
+
justify-content: center;
|
26 |
+
align-items: center;
|
27 |
+
}
|
28 |
+
.footer-custom-block b {
|
29 |
+
margin-right: 10px;
|
30 |
+
}
|
31 |
+
.footer-custom-block img {
|
32 |
+
margin-right: 15px;
|
33 |
+
}
|
34 |
+
ol {
|
35 |
+
padding-left: 30px;
|
36 |
+
}
|
37 |
+
"""
|