gsarti commited on
Commit
d82cd6f
·
1 Parent(s): 65c6c48

Usage guide to be completed

Browse files
.gitignore CHANGED
@@ -1,3 +1,4 @@
1
  *.pyc
2
  *.html
3
- *.json
 
 
1
  *.pyc
2
  *.html
3
+ *.json
4
+ .DS_Store
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🐑 🐑
4
  colorFrom: blue
5
  colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.15.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
4
  colorFrom: blue
5
  colorTo: green
6
  sdk: gradio
7
+ sdk_version: 4.21.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
app.py CHANGED
@@ -7,10 +7,15 @@ from contents import (
7
  citation,
8
  description,
9
  examples,
10
- how_it_works,
 
 
11
  how_to_use,
 
12
  subtitle,
13
  title,
 
 
14
  )
15
  from gradio_highlightedtextbox import HighlightedTextbox
16
  from presets import (
@@ -21,6 +26,7 @@ from presets import (
21
  set_towerinstruct_preset,
22
  set_zephyr_preset,
23
  set_gemma_preset,
 
24
  )
25
  from style import custom_css
26
  from utils import get_formatted_attribute_context_results
@@ -50,8 +56,9 @@ def pecore(
50
  attribution_std_threshold: float,
51
  attribution_topk: int,
52
  input_template: str,
53
- contextless_input_current_text: str,
54
  output_template: str,
 
 
55
  special_tokens_to_keep: str | list[str] | None,
56
  decoder_input_output_separator: str,
57
  model_kwargs: str,
@@ -62,7 +69,7 @@ def pecore(
62
  global loaded_model
63
  if "{context}" in output_template and not output_context_text:
64
  raise gr.Error(
65
- "Parameter 'Generated context' is required when using {context} in the output template."
66
  )
67
  if loaded_model is None or model_name_or_path != loaded_model.model_name:
68
  gr.Info("Loading model...")
@@ -109,16 +116,29 @@ def pecore(
109
  input_current_text=input_current_text,
110
  input_template=input_template,
111
  output_template=output_template,
112
- contextless_input_current_text=contextless_input_current_text,
 
113
  handle_output_context_strategy="pre",
114
  **kwargs,
115
  )
116
  out = attribute_context_with_model(pecore_args, loaded_model)
117
  tuples = get_formatted_attribute_context_results(loaded_model, out.info, out)
118
  if not tuples:
119
- msg = f"Output: {out.output_current}\nWarning: No pairs were found by PECoRe. Try adjusting Results Selection parameters."
120
  tuples = [(msg, None)]
121
- return tuples, gr.Button(visible=True), gr.Button(visible=True)
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
 
124
  @spaces.GPU()
@@ -140,19 +160,25 @@ def preload_model(
140
 
141
 
142
  with gr.Blocks(css=custom_css) as demo:
143
- gr.Markdown(title)
144
- gr.Markdown(subtitle)
 
 
 
 
 
 
145
  gr.Markdown(description)
146
- with gr.Tab("🐑 Attributing Context"):
147
  with gr.Row():
148
  with gr.Column():
149
  input_context_text = gr.Textbox(
150
- label="Input context", lines=4, placeholder="Your input context..."
151
  )
152
  input_current_text = gr.Textbox(
153
  label="Input query", placeholder="Your input query..."
154
  )
155
- attribute_input_button = gr.Button("Submit", variant="primary")
156
  with gr.Column():
157
  pecore_output_highlights = HighlightedTextbox(
158
  value=[
@@ -163,8 +189,8 @@ with gr.Blocks(css=custom_css) as demo:
163
  (" tokens.", None),
164
  ],
165
  color_map={
166
- "Context sensitive": "green",
167
- "Influential context": "blue",
168
  },
169
  show_legend=True,
170
  label="PECoRe Output",
@@ -172,30 +198,31 @@ with gr.Blocks(css=custom_css) as demo:
172
  interactive=False,
173
  )
174
  with gr.Row(equal_height=True):
175
- download_output_file_button = gr.Button(
176
- " Download output",
177
  visible=False,
178
- link=os.path.join(
179
- os.path.dirname(__file__), "/file=outputs/output.json"
180
- ),
181
  )
182
- download_output_html_button = gr.Button(
183
  "🔍 Download HTML",
184
  visible=False,
185
- link=os.path.join(
186
- os.path.dirname(__file__), "/file=outputs/output.html"
187
  ),
188
  )
189
-
 
 
190
  attribute_input_examples = gr.Examples(
191
  examples,
192
  inputs=[input_current_text, input_context_text],
193
  outputs=pecore_output_highlights,
 
194
  )
195
  with gr.Tab("⚙️ Parameters") as params_tab:
196
  gr.Markdown(
197
- "## ✨ Presets\nSelect a preset to load default parameters into the fields below. ⚠️ This will overwrite existing parameters."
198
  )
 
199
  with gr.Row(equal_height=True):
200
  with gr.Column():
201
  default_preset = gr.Button("Default", variant="secondary")
@@ -208,9 +235,9 @@ with gr.Blocks(css=custom_css) as demo:
208
  "Preset for the <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model.\nUses special templates for inputs."
209
  )
210
  with gr.Column():
211
- zephyr_preset = gr.Button("Zephyr Template", variant="secondary")
212
  gr.Markdown(
213
- "Preset for models using the <a href='https://huggingface.co/HuggingFaceH4/zephyr-7b-beta' target='_blank'>Zephyr conversational template</a>.\nUses <code><|system|></code>, <code><|user|></code> and <code><|assistant|></code> special tokens."
214
  )
215
  with gr.Row(equal_height=True):
216
  with gr.Column(scale=1):
@@ -227,7 +254,7 @@ with gr.Blocks(css=custom_css) as demo:
227
  )
228
  with gr.Column(scale=1):
229
  towerinstruct_template = gr.Button(
230
- "Unbabel TowerInstruct", variant="secondary"
231
  )
232
  gr.Markdown(
233
  "Preset for models using the <a href='https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1' target='_blank'>Unbabel TowerInstruct</a> conversational template.\nUses <code><|im_start|></code>, <code><|im_end|></code> special tokens."
@@ -235,16 +262,23 @@ with gr.Blocks(css=custom_css) as demo:
235
  with gr.Row(equal_height=True):
236
  with gr.Column(scale=1):
237
  gemma_template = gr.Button(
238
- "Gemma Chat Template", variant="secondary"
239
  )
240
  gr.Markdown(
241
  "Preset for <a href='https://huggingface.co/google/gemma-2b-it' target='_blank'>Gemma</a> instruction-tuned models."
242
  )
 
 
 
 
 
 
 
243
  gr.Markdown("## ⚙️ PECoRe Parameters")
244
  with gr.Row(equal_height=True):
245
  with gr.Column():
246
  model_name_or_path = gr.Textbox(
247
- value="gpt2",
248
  label="Model",
249
  info="Hugging Face Hub identifier of the model to analyze with PECoRe.",
250
  interactive=True,
@@ -277,7 +311,7 @@ with gr.Blocks(css=custom_css) as demo:
277
  gr.Markdown("#### Results Selection Parameters")
278
  with gr.Row(equal_height=True):
279
  context_sensitivity_std_threshold = gr.Number(
280
- value=1.0,
281
  label="Context sensitivity threshold",
282
  info="Select N to keep context sensitive tokens with scores above N * std. 0 = above mean.",
283
  precision=1,
@@ -306,33 +340,39 @@ with gr.Blocks(css=custom_css) as demo:
306
  interactive=True,
307
  )
308
  attribution_topk = gr.Number(
309
- value=0,
310
  label="Attribution top-k",
311
  info="Select N to keep top N attributed tokens in the context. 0 = keep all.",
312
  interactive=True,
313
  precision=0,
314
  minimum=0,
315
- maximum=50,
316
  )
317
 
318
  gr.Markdown("#### Text Format Parameters")
319
  with gr.Row(equal_height=True):
320
  input_template = gr.Textbox(
321
- value="{current} <P>:{context}",
322
- label="Input template",
323
- info="Template to format the input for the model. Use {current} and {context} placeholders.",
324
  interactive=True,
325
  )
326
  output_template = gr.Textbox(
327
  value="{current}",
328
- label="Output template",
329
- info="Template to format the output from the model. Use {current} and {context} placeholders.",
330
  interactive=True,
331
  )
332
- contextless_input_current_text = gr.Textbox(
333
  value="<Q>:{current}",
334
- label="Input current text template",
335
- info="Template to format the input query for the model. Use {current} placeholder.",
 
 
 
 
 
 
336
  interactive=True,
337
  )
338
  with gr.Row(equal_height=True):
@@ -401,16 +441,34 @@ with gr.Blocks(css=custom_css) as demo:
401
  )
402
  with gr.Column():
403
  attribution_kwargs = gr.Code(
404
- value="{}",
405
  language="json",
406
  label="Attribution kwargs (JSON)",
407
  interactive=True,
408
  lines=1,
409
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
 
411
- gr.Markdown(how_it_works)
412
- gr.Markdown(how_to_use)
413
- gr.Markdown(citation)
414
 
415
  # Main logic
416
 
@@ -422,6 +480,10 @@ with gr.Blocks(css=custom_css) as demo:
422
  ]
423
 
424
  attribute_input_button.click(
 
 
 
 
425
  pecore,
426
  inputs=[
427
  input_current_text,
@@ -437,8 +499,9 @@ with gr.Blocks(css=custom_css) as demo:
437
  attribution_std_threshold,
438
  attribution_topk,
439
  input_template,
440
- contextless_input_current_text,
441
  output_template,
 
 
442
  special_tokens_to_keep,
443
  decoder_input_output_separator,
444
  model_kwargs,
@@ -461,11 +524,18 @@ with gr.Blocks(css=custom_css) as demo:
461
 
462
  # Preset params
463
 
 
 
 
 
 
 
464
  outputs_to_reset = [
465
  model_name_or_path,
466
  input_template,
467
- contextless_input_current_text,
468
  output_template,
 
 
469
  special_tokens_to_keep,
470
  decoder_input_output_separator,
471
  model_kwargs,
@@ -485,7 +555,7 @@ with gr.Blocks(css=custom_css) as demo:
485
 
486
  cora_preset.click(**reset_kwargs).then(
487
  set_cora_preset,
488
- outputs=[model_name_or_path, input_template, contextless_input_current_text],
489
  ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
490
 
491
  zephyr_preset.click(**reset_kwargs).then(
@@ -493,8 +563,9 @@ with gr.Blocks(css=custom_css) as demo:
493
  outputs=[
494
  model_name_or_path,
495
  input_template,
496
- contextless_input_current_text,
497
  decoder_input_output_separator,
 
498
  ],
499
  ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
500
 
@@ -508,7 +579,7 @@ with gr.Blocks(css=custom_css) as demo:
508
  outputs=[
509
  model_name_or_path,
510
  input_template,
511
- contextless_input_current_text,
512
  decoder_input_output_separator,
513
  special_tokens_to_keep,
514
  ],
@@ -519,7 +590,7 @@ with gr.Blocks(css=custom_css) as demo:
519
  outputs=[
520
  model_name_or_path,
521
  input_template,
522
- contextless_input_current_text,
523
  decoder_input_output_separator,
524
  special_tokens_to_keep,
525
  ],
@@ -530,10 +601,20 @@ with gr.Blocks(css=custom_css) as demo:
530
  outputs=[
531
  model_name_or_path,
532
  input_template,
533
- contextless_input_current_text,
534
  decoder_input_output_separator,
535
  special_tokens_to_keep,
536
  ],
537
  ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
538
 
539
- demo.launch(allowed_paths=["outputs/"])
 
 
 
 
 
 
 
 
 
 
 
7
  citation,
8
  description,
9
  examples,
10
+ how_it_works_intro,
11
+ cti_explanation,
12
+ cci_explanation,
13
  how_to_use,
14
+ example_explanation,
15
  subtitle,
16
  title,
17
+ powered_by,
18
+ support,
19
  )
20
  from gradio_highlightedtextbox import HighlightedTextbox
21
  from presets import (
 
26
  set_towerinstruct_preset,
27
  set_zephyr_preset,
28
  set_gemma_preset,
29
+ set_mistral_instruct_preset,
30
  )
31
  from style import custom_css
32
  from utils import get_formatted_attribute_context_results
 
56
  attribution_std_threshold: float,
57
  attribution_topk: int,
58
  input_template: str,
 
59
  output_template: str,
60
+ contextless_input_template: str,
61
+ contextless_output_template: str,
62
  special_tokens_to_keep: str | list[str] | None,
63
  decoder_input_output_separator: str,
64
  model_kwargs: str,
 
69
  global loaded_model
70
  if "{context}" in output_template and not output_context_text:
71
  raise gr.Error(
72
+ "Parameter 'Generation context' must be set when including {context} in the output template."
73
  )
74
  if loaded_model is None or model_name_or_path != loaded_model.model_name:
75
  gr.Info("Loading model...")
 
116
  input_current_text=input_current_text,
117
  input_template=input_template,
118
  output_template=output_template,
119
+ contextless_input_current_text=contextless_input_template,
120
+ contextless_output_current_text=contextless_output_template,
121
  handle_output_context_strategy="pre",
122
  **kwargs,
123
  )
124
  out = attribute_context_with_model(pecore_args, loaded_model)
125
  tuples = get_formatted_attribute_context_results(loaded_model, out.info, out)
126
  if not tuples:
127
+ msg = f"Output: {out.output_current}\nWarning: No pairs were found by PECoRe.\nTry adjusting Results Selection parameters to soften selection constraints (e.g. setting Context sensitivity threshold to 0)."
128
  tuples = [(msg, None)]
129
+ return [
130
+ tuples,
131
+ gr.DownloadButton(
132
+ label="📂 Download output",
133
+ value=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
134
+ visible=True,
135
+ ),
136
+ gr.DownloadButton(
137
+ label="🔍 Download HTML",
138
+ value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
139
+ visible=True,
140
+ )
141
+ ]
142
 
143
 
144
  @spaces.GPU()
 
160
 
161
 
162
  with gr.Blocks(css=custom_css) as demo:
163
+ with gr.Row():
164
+ with gr.Column(scale=0.1, min_width=100):
165
+ gr.HTML(f'<img src="file/img/pecore_logo_white_contour.png" width=100px />')
166
+ with gr.Column(scale=0.8):
167
+ gr.Markdown(title)
168
+ gr.Markdown(subtitle)
169
+ with gr.Column(scale=0.1, min_width=100):
170
+ gr.HTML(f'<img src="file/img/pecore_logo_white_contour.png" width=100px />')
171
  gr.Markdown(description)
172
+ with gr.Tab("🐑 Demo"):
173
  with gr.Row():
174
  with gr.Column():
175
  input_context_text = gr.Textbox(
176
+ label="Input context", lines=3, placeholder="Your input context..."
177
  )
178
  input_current_text = gr.Textbox(
179
  label="Input query", placeholder="Your input query..."
180
  )
181
+ attribute_input_button = gr.Button("Run PECoRe", variant="primary")
182
  with gr.Column():
183
  pecore_output_highlights = HighlightedTextbox(
184
  value=[
 
189
  (" tokens.", None),
190
  ],
191
  color_map={
192
+ "Context sensitive": "#5fb77d",
193
+ "Influential context": "#80ace8",
194
  },
195
  show_legend=True,
196
  label="PECoRe Output",
 
198
  interactive=False,
199
  )
200
  with gr.Row(equal_height=True):
201
+ download_output_file_button = gr.DownloadButton(
202
+ "📂 Download output",
203
  visible=False,
 
 
 
204
  )
205
+ download_output_html_button = gr.DownloadButton(
206
  "🔍 Download HTML",
207
  visible=False,
208
+ value=os.path.join(
209
+ os.path.dirname(__file__), "outputs/output.html"
210
  ),
211
  )
212
+ preset_comment = gr.Markdown(
213
+ "<i>The <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model by <a href='https://openreview.net/forum?id=e8blYRui3j' target='_blank'>Asai et al. (2021)</a> is set as default and can be used with the examples below. Explore other presets in the ⚙️ Parameters tab.</i>"
214
+ )
215
  attribute_input_examples = gr.Examples(
216
  examples,
217
  inputs=[input_current_text, input_context_text],
218
  outputs=pecore_output_highlights,
219
+ examples_per_page=1,
220
  )
221
  with gr.Tab("⚙️ Parameters") as params_tab:
222
  gr.Markdown(
223
+ "## ✨ Presets\nSelect a preset to load the selected model and its default parameters (e.g. prompt template, special tokens, etc.) into the fields below.<br>⚠️ **This will overwrite existing parameters. If you intend to use large models that could crash the demo, please clone this Space and allocate appropriate resources for them to run comfortably.**"
224
  )
225
+ check_enable_large_models = gr.Checkbox(False, label = "I understand, enable large models presets")
226
  with gr.Row(equal_height=True):
227
  with gr.Column():
228
  default_preset = gr.Button("Default", variant="secondary")
 
235
  "Preset for the <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model.\nUses special templates for inputs."
236
  )
237
  with gr.Column():
238
+ zephyr_preset = gr.Button("Zephyr Template", variant="secondary", interactive=False)
239
  gr.Markdown(
240
+ "Preset for models using the <a href='https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b' target='_blank'>StableLM 2 Zephyr conversational template</a>.\nUses <code><|system|></code>, <code><|user|></code> and <code><|assistant|></code> special tokens."
241
  )
242
  with gr.Row(equal_height=True):
243
  with gr.Column(scale=1):
 
254
  )
255
  with gr.Column(scale=1):
256
  towerinstruct_template = gr.Button(
257
+ "Unbabel TowerInstruct", variant="secondary", interactive=False
258
  )
259
  gr.Markdown(
260
  "Preset for models using the <a href='https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1' target='_blank'>Unbabel TowerInstruct</a> conversational template.\nUses <code><|im_start|></code>, <code><|im_end|></code> special tokens."
 
262
  with gr.Row(equal_height=True):
263
  with gr.Column(scale=1):
264
  gemma_template = gr.Button(
265
+ "Gemma Chat Template", variant="secondary", interactive=False
266
  )
267
  gr.Markdown(
268
  "Preset for <a href='https://huggingface.co/google/gemma-2b-it' target='_blank'>Gemma</a> instruction-tuned models."
269
  )
270
+ with gr.Column(scale=1):
271
+ mistral_instruct_template = gr.Button(
272
+ "Mistral Instruct", variant="secondary", interactive=False
273
+ )
274
+ gr.Markdown(
275
+ "Preset for models using the <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2' target='_blank'>Mistral Instruct template</a>.\nUses <code>[INST]...[/INST]</code> special tokens."
276
+ )
277
  gr.Markdown("## ⚙️ PECoRe Parameters")
278
  with gr.Row(equal_height=True):
279
  with gr.Column():
280
  model_name_or_path = gr.Textbox(
281
+ value="gsarti/cora_mgen",
282
  label="Model",
283
  info="Hugging Face Hub identifier of the model to analyze with PECoRe.",
284
  interactive=True,
 
311
  gr.Markdown("#### Results Selection Parameters")
312
  with gr.Row(equal_height=True):
313
  context_sensitivity_std_threshold = gr.Number(
314
+ value=0.0,
315
  label="Context sensitivity threshold",
316
  info="Select N to keep context sensitive tokens with scores above N * std. 0 = above mean.",
317
  precision=1,
 
340
  interactive=True,
341
  )
342
  attribution_topk = gr.Number(
343
+ value=5,
344
  label="Attribution top-k",
345
  info="Select N to keep top N attributed tokens in the context. 0 = keep all.",
346
  interactive=True,
347
  precision=0,
348
  minimum=0,
349
+ maximum=100,
350
  )
351
 
352
  gr.Markdown("#### Text Format Parameters")
353
  with gr.Row(equal_height=True):
354
  input_template = gr.Textbox(
355
+ value="<Q>:{current} <P>:{context}",
356
+ label="Contextual input template",
357
+ info="Template to format the input for the model. Use {current} and {context} placeholders for Input Query and Input Context, respectively.",
358
  interactive=True,
359
  )
360
  output_template = gr.Textbox(
361
  value="{current}",
362
+ label="Contextual output template",
363
+ info="Template to format the output from the model. Use {current} and {context} placeholders for Generation Output and Generation Context, respectively.",
364
  interactive=True,
365
  )
366
+ contextless_input_template = gr.Textbox(
367
  value="<Q>:{current}",
368
+ label="Contextless input template",
369
+ info="Template to format the input query in the non-contextual setting. Use {current} placeholder for Input Query.",
370
+ interactive=True,
371
+ )
372
+ contextless_output_template = gr.Textbox(
373
+ value="{current}",
374
+ label="Contextless output template",
375
+ info="Template to format the output from the model. Use {current} placeholder for Generation Output.",
376
  interactive=True,
377
  )
378
  with gr.Row(equal_height=True):
 
441
  )
442
  with gr.Column():
443
  attribution_kwargs = gr.Code(
444
+ value='{\n\t"logprob": true\n}',
445
  language="json",
446
  label="Attribution kwargs (JSON)",
447
  interactive=True,
448
  lines=1,
449
  )
450
+ with gr.Tab("🔍 How Does It Work?"):
451
+ gr.Markdown(how_it_works_intro)
452
+ with gr.Row(equal_height=True):
453
+ with gr.Column(scale=0.60):
454
+ gr.Markdown(cti_explanation)
455
+ with gr.Column(scale=0.30):
456
+ gr.HTML('<img src="file/img/cti_white_outline.png" width=100% />')
457
+ with gr.Row(equal_height=True):
458
+ with gr.Column(scale=0.35):
459
+ gr.HTML('<img src="file/img/cci_white_outline.png" width=100% />')
460
+ with gr.Column(scale=0.65):
461
+ gr.Markdown(cci_explanation)
462
+ with gr.Tab("🔧 Usage Guide"):
463
+ gr.Markdown(how_to_use)
464
+ gr.HTML('<img src="file/img/pecore_ui_output_example.png" width=100% />')
465
+ gr.Markdown(example_explanation)
466
+ with gr.Tab("📚 Citing PECoRe"):
467
+ gr.Markdown(citation)
468
+ with gr.Row(elem_classes="footer-container"):
469
+ gr.Markdown(powered_by)
470
+ gr.Markdown(support)
471
 
 
 
 
472
 
473
  # Main logic
474
 
 
480
  ]
481
 
482
  attribute_input_button.click(
483
+ lambda *args: [gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)],
484
+ inputs=[],
485
+ outputs=[download_output_file_button, download_output_html_button],
486
+ ).then(
487
  pecore,
488
  inputs=[
489
  input_current_text,
 
499
  attribution_std_threshold,
500
  attribution_topk,
501
  input_template,
 
502
  output_template,
503
+ contextless_input_template,
504
+ contextless_output_template,
505
  special_tokens_to_keep,
506
  decoder_input_output_separator,
507
  model_kwargs,
 
524
 
525
  # Preset params
526
 
527
+ check_enable_large_models.input(
528
+ lambda checkbox, *buttons: [gr.Button(interactive=checkbox) for _ in buttons],
529
+ inputs=[check_enable_large_models, zephyr_preset, towerinstruct_template, gemma_template, mistral_instruct_template],
530
+ outputs=[zephyr_preset, towerinstruct_template, gemma_template, mistral_instruct_template],
531
+ )
532
+
533
  outputs_to_reset = [
534
  model_name_or_path,
535
  input_template,
 
536
  output_template,
537
+ contextless_input_template,
538
+ contextless_output_template,
539
  special_tokens_to_keep,
540
  decoder_input_output_separator,
541
  model_kwargs,
 
555
 
556
  cora_preset.click(**reset_kwargs).then(
557
  set_cora_preset,
558
+ outputs=[model_name_or_path, input_template, contextless_input_template],
559
  ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
560
 
561
  zephyr_preset.click(**reset_kwargs).then(
 
563
  outputs=[
564
  model_name_or_path,
565
  input_template,
566
+ contextless_input_template,
567
  decoder_input_output_separator,
568
+ special_tokens_to_keep,
569
  ],
570
  ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
571
 
 
579
  outputs=[
580
  model_name_or_path,
581
  input_template,
582
+ contextless_input_template,
583
  decoder_input_output_separator,
584
  special_tokens_to_keep,
585
  ],
 
590
  outputs=[
591
  model_name_or_path,
592
  input_template,
593
+ contextless_input_template,
594
  decoder_input_output_separator,
595
  special_tokens_to_keep,
596
  ],
 
601
  outputs=[
602
  model_name_or_path,
603
  input_template,
604
+ contextless_input_template,
605
  decoder_input_output_separator,
606
  special_tokens_to_keep,
607
  ],
608
  ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
609
 
610
+ mistral_instruct_template.click(**reset_kwargs).then(
611
+ set_mistral_instruct_preset,
612
+ outputs=[
613
+ model_name_or_path,
614
+ input_template,
615
+ contextless_input_template,
616
+ decoder_input_output_separator,
617
+ ],
618
+ ).success(preload_model, inputs=load_model_args, cancels=load_model_event)
619
+
620
+ demo.launch(allowed_paths=["outputs/", "img/"])
contents.py CHANGED
@@ -3,31 +3,52 @@ title = "<h1 class='demo-title'>🐑 Plausibility Evaluation of Context Reliance
3
  subtitle = "<h2 class='demo-subtitle'>An Interpretability Framework to Detect and Attribute Context Reliance in Language Models</h2>"
4
 
5
  description = """
6
- Given a query and a context passed as inputs to a LM, PECoRe will identify which tokens in the generated
7
- response were dependant on context, and match them with context tokens contributing to their prediction.
8
- For more information, check out our <a href="https://openreview.net/forum?id=XTHfNGI3zT" target='_blank'>ICLR 2024 paper</a>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  """
10
 
11
- how_it_works = r"""
12
- <details>
13
- <summary><h3 class="summary-label">⚙️ How Does It Work?</h3></summary>
14
- <br/>
15
- PECoRe uses a contrastive approach to attribute context reliance in language models.
16
- It compares the model's predictions when the context is present and when it is absent, and attributes the difference in predictions to the context tokens.
17
- </details>
18
  """
19
 
20
- how_to_use = r"""
21
- <details>
22
- <summary><h3 class="summary-label">🔧 How to Use PECoRe</h3></summary>
23
 
24
- </details>
25
  """
26
 
27
  citation = r"""
28
- <details>
29
- <summary><h3 class="summary-label">📚 Citing PECoRe</h3></summary>
30
- <p>To refer to the PECoRe framework for context usage detection, cite:</p>
31
  <div class="code_wrap"><button class="copy_code_button" title="copy">
32
  <span class="copy-text"><svg viewBox="0 0 32 32" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><path d="M28 10v18H10V10h18m0-2H10a2 2 0 0 0-2 2v18a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V10a2 2 0 0 0-2-2Z" fill="currentColor"></path><path d="M4 18H2V4a2 2 0 0 1 2-2h14v2H4Z" fill="currentColor"></path></svg></span>
33
  <span class="check"><svg stroke-linejoin="round" stroke-linecap="round" stroke-width="3" stroke="currentColor" fill="none" viewBox="0 0 24 24" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>
@@ -47,8 +68,7 @@ citation = r"""
47
  }
48
  </code></pre></div>
49
 
50
-
51
- If you use the Inseq implementation of PECoRe (<a href="https://inseq.org/en/latest/main_classes/cli.html#attribute-context"><code>inseq attribute-context</code></a>), please also cite:
52
  <div class="code_wrap"><button class="copy_code_button" title="copy">
53
  <span class="copy-text"><svg viewBox="0 0 32 32" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><path d="M28 10v18H10V10h18m0-2H10a2 2 0 0 0-2 2v18a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V10a2 2 0 0 0-2-2Z" fill="currentColor"></path><path d="M4 18H2V4a2 2 0 0 1 2-2h14v2H4Z" fill="currentColor"></path></svg></span>
54
  <span class="check"><svg stroke-linejoin="round" stroke-linecap="round" stroke-width="3" stroke="currentColor" fill="none" viewBox="0 0 24 24" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>
@@ -56,11 +76,11 @@ If you use the Inseq implementation of PECoRe (<a href="https://inseq.org/en/lat
56
  @inproceedings{sarti-etal-2023-inseq,
57
  title = "Inseq: An Interpretability Toolkit for Sequence Generation Models",
58
  author = "Sarti, Gabriele and
59
- Feldhus, Nils and
60
- Sickert, Ludwig and
61
- van der Wal, Oskar and
62
- Nissim, Malvina and
63
- Bisazza, Arianna",
64
  booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
65
  month = jul,
66
  year = "2023",
@@ -70,13 +90,27 @@ If you use the Inseq implementation of PECoRe (<a href="https://inseq.org/en/lat
70
  pages = "421--435",
71
  }
72
  </code></pre></div>
73
-
74
- </details>
75
  """
76
 
 
 
 
 
77
  examples = [
 
 
 
 
78
  [
79
  "When was Banff National Park established?",
80
  "Banff National Park is Canada's oldest national park, established in 1885 as Rocky Mountains Park. Located in Alberta's Rocky Mountains, 110-180 kilometres (68-112 mi) west of Calgary, Banff encompasses 6,641 square kilometres (2,564 sq mi) of mountainous terrain.",
 
 
 
 
 
 
 
 
81
  ]
82
  ]
 
3
  subtitle = "<h2 class='demo-subtitle'>An Interpretability Framework to Detect and Attribute Context Reliance in Language Models</h2>"
4
 
5
  description = """
6
+ PECoRe is a framework for trustworthy language generation using only model internals to detect and attribute model
7
+ generations to its available input context. Given a query-context input pair, PECoRe identifies which tokens in the generated
8
+ response were more dependant on context (<span class="category-label" style="background-color:#5fb77d; color: black; font-weight: var(--weight-semibold)">Context sensitive </span>), and match them with context tokens contributing the most to their prediction (<span class="category-label" style="background-color:#80ace8; color: black; font-weight: var(--weight-semibold)">Influential context </span>).
9
+
10
+ Check out <a href="https://openreview.net/forum?id=XTHfNGI3zT" target='_blank'>our ICLR 2024 paper</a> for more details. A new paper applying PECoRe to retrieval-augmented QA is forthcoming ✨ stay tuned!
11
+ """
12
+
13
+ how_it_works_intro = """
14
+ The PECoRe (Plausibility Evaluation of Context Reliance) framework is designed to <b>detect and quantify context usage</b> throughout language model generations. Its final goal is to return <b>one or more pairs</b> representing tokens in the generated response that were influenced by the presence of context (<span class="category-label" style="background-color:#5fb77d; color: black; font-weight: var(--weight-semibold)">Context sensitive </span>), and their corresponding influential context tokens (<span class="category-label" style="background-color:#80ace8; color: black; font-weight: var(--weight-semibold)">Influential context </span>).
15
+
16
+ The PECoRe procedure involves two contrastive comparison steps:
17
+ """
18
+
19
+ cti_explanation = """
20
+ <h3>1. Context-sensitive Token Identification (CTI)</h3>
21
+ <p>In this step, the goal is to identify which tokens in the generated text were influenced by the preceding context.</p>
22
+ <p>First, a context-aware generation is produced using the model's inputs augmented with available context. Then, the same generation is force-decoded using the contextless inputs. During both processes, a <b>contrastive metric</b> (KL-divergence is used as default for the <code>Context sensitivity metric</code> parameter) are collected for every generated token. Intuitively, higher metric scores indicate that the current generation step was more influenced by the presence of context.</p>
23
+ <p>The generated tokens are ranked according to their metric scores, and the most salient tokens are selected for the next step (This demo provides a <code>Context sensitivity threshold</code> parameter to select tokens above <code>N</code> standard deviations from the in-example metric average, and <code>Context sensitivity top-k</code> to pick the K most salient tokens.)</p>
24
+ <p>In the example shown in the figure, <code>elle</code> is selected as the only context-sensitive token by the procedure.</p>
25
+ """
26
+
27
+ cci_explanation = """
28
+ <h3>2. Contextual Cue Imputation (CCI)</h3>
29
+ <p>Once context-sensitive tokens are identified, the next step is to link every one of these tokens to specific contextual cues that justified its prediction.</p>
30
+ <p>This is achieved by means of <b>contrastive feature attribution</b> (<a href="https://aclanthology.org/2022.emnlp-main.14/" target="_blank">Yin and Neubig, 2022</a>). More specifically, for a given context-sensitive token, a contrastive alternative to it is generated in absence of input context, and a function of the probabilities of the pair is used to identify salient parts of the context (By default, in this demo we use <code>saliency</code>, i.e. raw gradients, for the <code>Attribution method</code> and <code>contrast_prob_diff</code>, i.e. the probability difference between the two options, for the <code>Attributed function</code>).</p>
31
+ <p>Gradients are collected and aggregated to obtain a single score per context token, which is then used to rank the tokens and select the most influential ones (This demo provides a <code>Attribution threshold</code> parameter to select tokens above <code>N</code> standard deviations from the in-example metric average, and <code>Attribution top-k</code> to pick the K most salient tokens.)</p>
32
+ <p>In the example shown in the figure, the attribution process links <code>elle</code> to <code>dishes</code> and <code>assiettes</code> in the source and target contexts, respectively. This makes sense intuitively, as <code>they</code> in the original input is gender-neutral in English, and the presence of its gendered coreferent disambiguates the choice for the French pronoun in the translation.</p>
33
  """
34
 
35
+ how_to_use = """
36
+ <h3>How to use this demo</h3>
37
+
38
+ <p>This demo provides a convenient UI for the Inseq implementation of PECoRe (the <a href="https://inseq.org/en/latest/main_classes/cli.html#attribute-context"><code>inseq attribute-context</code></a> CLI command).</p>
39
+ <p>In the demo tab, fill in the input and context fields with the text you want to analyze, and click the <code>Run PECoRe</code> button to produce an output where the tokens selected by PECoRe in the model generation and context are highlighted. For more details on the parameters and their meaning, check the <code>Parameters</code> tab.</p>
40
+
41
+ <h3>Interpreting PECoRe results</h3>
42
  """
43
 
44
+ example_explanation = """
45
+ <p>The example shows the output of the <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model used as default in the interface, using default settings.</p>
46
+ <p>
47
 
 
48
  """
49
 
50
  citation = r"""
51
+ <p>To refer to the PECoRe framework for context usage detection, cite:</p>
 
 
52
  <div class="code_wrap"><button class="copy_code_button" title="copy">
53
  <span class="copy-text"><svg viewBox="0 0 32 32" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><path d="M28 10v18H10V10h18m0-2H10a2 2 0 0 0-2 2v18a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V10a2 2 0 0 0-2-2Z" fill="currentColor"></path><path d="M4 18H2V4a2 2 0 0 1 2-2h14v2H4Z" fill="currentColor"></path></svg></span>
54
  <span class="check"><svg stroke-linejoin="round" stroke-linecap="round" stroke-width="3" stroke="currentColor" fill="none" viewBox="0 0 24 24" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>
 
68
  }
69
  </code></pre></div>
70
 
71
+ If you use the Inseq implementation of PECoRe (<a href="https://inseq.org/en/latest/main_classes/cli.html#attribute-context"><code>inseq attribute-context</code></a>, including this demo), please also cite:
 
72
  <div class="code_wrap"><button class="copy_code_button" title="copy">
73
  <span class="copy-text"><svg viewBox="0 0 32 32" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><path d="M28 10v18H10V10h18m0-2H10a2 2 0 0 0-2 2v18a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V10a2 2 0 0 0-2-2Z" fill="currentColor"></path><path d="M4 18H2V4a2 2 0 0 1 2-2h14v2H4Z" fill="currentColor"></path></svg></span>
74
  <span class="check"><svg stroke-linejoin="round" stroke-linecap="round" stroke-width="3" stroke="currentColor" fill="none" viewBox="0 0 24 24" height="100%" width="100%" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>
 
76
  @inproceedings{sarti-etal-2023-inseq,
77
  title = "Inseq: An Interpretability Toolkit for Sequence Generation Models",
78
  author = "Sarti, Gabriele and
79
+ Feldhus, Nils and
80
+ Sickert, Ludwig and
81
+ van der Wal, Oskar and
82
+ Nissim, Malvina and
83
+ Bisazza, Arianna",
84
  booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
85
  month = jul,
86
  year = "2023",
 
90
  pages = "421--435",
91
  }
92
  </code></pre></div>
 
 
93
  """
94
 
95
+ powered_by = """<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a></div>"""
96
+
97
+ support = """<div class="footer-custom-block"><b>With the support of</b> <a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=120px /></a><a href='https://www.esciencecenter.nl/' target='_blank'><img src="file/img/escience_logo_white_contour.png" width=160px /></a></div>"""
98
+
99
  examples = [
100
+ [
101
+ "How many inhabitants does Groningen have?",
102
+ "Groningen is the capital city and main municipality of Groningen province in the Netherlands. The capital of the north, Groningen is the largest place as well as the economic and cultural centre of the northern part of the country as of December 2021, it had 235,287 inhabitants, making it the sixth largest city/municipality in the Netherlands and the second largest outside the Randstad. Groningen was established more than 950 years ago and gained city rights in 1245."
103
+ ],
104
  [
105
  "When was Banff National Park established?",
106
  "Banff National Park is Canada's oldest national park, established in 1885 as Rocky Mountains Park. Located in Alberta's Rocky Mountains, 110-180 kilometres (68-112 mi) west of Calgary, Banff encompasses 6,641 square kilometres (2,564 sq mi) of mountainous terrain.",
107
+ ],
108
+ [
109
+ "约翰·埃尔维目前在野马队中担任什么角色?",
110
+ "培顿·曼宁成为史上首位带领两支不同球队多次进入超级碗的四分卫。他也以 39 岁高龄参加超级碗而成为史上年龄最大的四分卫。过去的记录是由约翰·埃尔维保持的,他在 38岁时带领野马队赢得第 33 届超级碗,目前担任丹佛的橄榄球运营执行副总裁兼总经理。",
111
+ ],
112
+ [
113
+ "Qual'è il porto più settentrionale della Slovenia?",
114
+ "Trieste si trova a nordest dell'Italia. La città dista solo alcuni chilometri dal confine con la Slovenia e si trova fra la penisola italiana e la penisola istriana. Il porto triestino è il più settentrionale tra quelli situati nel mare Adriatico. Questa particolare posizione ha da sempre permesso alle navi di approdare direttamente nell'Europa centrale. L'incredibile sviluppo che la città conobbe nell'800 grazie al suo porto franco, indusse a trasferirsi qui una moltitudine di lavoratori provenienti dall'Italia nonché tanti uomini d'affari da tutta Europa. Questa crescita così vorticosa, indotta dalla costituzione del porto franco, portò in poco più di un secolo la popolazione a crescere da poche migliaia fino a più di 200 000 persone, disseminando la città di chiese di tutte le maggiori religioni europee. La nuova città multietnica così formata ha nel tempo sviluppato un proprio linguaggio, infatti il Triestino moderno è un dialetto della lingua veneta. Nella provincia di Trieste vive la minoranza autoctona slovena, infatti nei paesi che circondano il capoluogo giuliano, i cartelli stradali e le insegne di molti negozi sono bilingui. La Provincia è la meno estesa d'Italia ed è quarta per densità abitativa, dopo Napoli, Milano e Monza."
115
  ]
116
  ]
img/cci_white_outline.png ADDED
img/cti_white_outline.png ADDED
img/escience_logo_white_contour.png ADDED
img/indeep_logo_white_contour.png ADDED
img/inseq_logo_white_contour.png ADDED
img/pecore_logo_white_contour.png ADDED
img/pecore_ui_output_example.png ADDED
presets.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  def set_cora_preset():
2
  return (
3
  "gsarti/cora_mgen", # model_name_or_path
@@ -10,8 +12,9 @@ def set_default_preset():
10
  return (
11
  "gpt2", # model_name_or_path
12
  "{current} {context}", # input_template
13
- "{current}", # input_current_template
14
  "{current}", # output_template
 
 
15
  [], # special_tokens_to_keep
16
  "", # decoder_input_output_separator
17
  "{}", # model_kwargs
@@ -24,18 +27,19 @@ def set_default_preset():
24
  def set_zephyr_preset():
25
  return (
26
  "stabilityai/stablelm-2-zephyr-1_6b", # model_name_or_path
27
- "<|system|>\n{context}</s>\n<|user|>\n{current}</s>\n<|assistant|>\n", # input_template
28
- "<|user|>\n{current}</s>\n<|assistant|>\n", # input_current_text_template
29
  "\n", # decoder_input_output_separator
 
30
  )
31
 
32
 
33
  def set_chatml_preset():
34
  return (
35
  "Qwen/Qwen1.5-0.5B-Chat", # model_name_or_path
36
- "<|im_start|>system\n{context}<|im_end|>\n<|im_start|>user\n{current}<|im_end|>\n<|im_start|>assistant\n", # input_template
37
- "<|im_start|>user\n{current}<|im_end|>\n<|im_start|>assistant\n", # input_current_text_template
38
- "", # decoder_input_output_separator
39
  ["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep
40
  )
41
 
@@ -52,17 +56,25 @@ def set_mmt_preset():
52
  def set_towerinstruct_preset():
53
  return (
54
  "Unbabel/TowerInstruct-7B-v0.1", # model_name_or_path
55
- "<|im_start|>user\nSource: {current}\nContext: {context}\nTranslate the above text into French. Use the context to guide your answer.\nTarget:<|im_end|>\n<|im_start|>assistant\n", # input_template
56
- "<|im_start|>user\nSource: {current}\nTranslate the above text into French.\nTarget:<|im_end|>\n<|im_start|>assistant\n", # input_current_text_template
57
- "", # decoder_input_output_separator
58
  ["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep
59
  )
60
 
61
  def set_gemma_preset():
62
  return (
63
  "google/gemma-2b-it", # model_name_or_path
64
- "<start_of_turn>user\n{context}\n{current}<end_of_turn>\n<start_of_turn>model\n", # input_template
65
- "<start_of_turn>user\n{current}<end_of_turn>\n<start_of_turn>model\n", # input_current_text_template
66
- "", # decoder_input_output_separator
67
  ["<start_of_turn>", "<end_of_turn>"], # special_tokens_to_keep
68
  )
 
 
 
 
 
 
 
 
 
1
+ SYSTEM_PROMPT = "You are a helpful assistant that provide concise and accurate answers."
2
+
3
  def set_cora_preset():
4
  return (
5
  "gsarti/cora_mgen", # model_name_or_path
 
12
  return (
13
  "gpt2", # model_name_or_path
14
  "{current} {context}", # input_template
 
15
  "{current}", # output_template
16
+ "{current}", # contextless_input_template
17
+ "{current}", # contextless_output_template
18
  [], # special_tokens_to_keep
19
  "", # decoder_input_output_separator
20
  "{}", # model_kwargs
 
27
  def set_zephyr_preset():
28
  return (
29
  "stabilityai/stablelm-2-zephyr-1_6b", # model_name_or_path
30
+ "<|system|>{system_prompt}<|endoftext|>\n<|user|>\n{context}\n\n{current}<|endoftext|>\n<|assistant|>".format(system_prompt=SYSTEM_PROMPT), # input_template
31
+ "<|system|>{system_prompt}<|endoftext|>\n<|user|>\n{current}<|endoftext|>\n<|assistant|>".format(system_prompt=SYSTEM_PROMPT), # input_current_text_template
32
  "\n", # decoder_input_output_separator
33
+ ["<|im_start|>", "<|im_end|>", "<|endoftext|>"], # special_tokens_to_keep
34
  )
35
 
36
 
37
  def set_chatml_preset():
38
  return (
39
  "Qwen/Qwen1.5-0.5B-Chat", # model_name_or_path
40
+ "<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{context}\n\n{current}<|im_end|>\n<|im_start|>assistant".format(system_prompt=SYSTEM_PROMPT), # input_template
41
+ "<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{current}<|im_end|>\n<|im_start|>assistant".format(system_prompt=SYSTEM_PROMPT), # input_current_text_template
42
+ "\n", # decoder_input_output_separator
43
  ["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep
44
  )
45
 
 
56
  def set_towerinstruct_preset():
57
  return (
58
  "Unbabel/TowerInstruct-7B-v0.1", # model_name_or_path
59
+ "<|im_start|>user\nSource: {current}\nContext: {context}\nTranslate the above text into French. Use the context to guide your answer.\nTarget:<|im_end|>\n<|im_start|>assistant", # input_template
60
+ "<|im_start|>user\nSource: {current}\nTranslate the above text into French.\nTarget:<|im_end|>\n<|im_start|>assistant", # input_current_text_template
61
+ "\n", # decoder_input_output_separator
62
  ["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep
63
  )
64
 
65
  def set_gemma_preset():
66
  return (
67
  "google/gemma-2b-it", # model_name_or_path
68
+ "<start_of_turn>user\n{context}\n{current}<end_of_turn>\n<start_of_turn>model", # input_template
69
+ "<start_of_turn>user\n{current}<end_of_turn>\n<start_of_turn>model", # input_current_text_template
70
+ "\n", # decoder_input_output_separator
71
  ["<start_of_turn>", "<end_of_turn>"], # special_tokens_to_keep
72
  )
73
+
74
+ def set_mistral_instruct_preset():
75
+ return (
76
+ "mistralai/Mistral-7B-Instruct-v0.2" # model_name_or_path
77
+ "[INST]{context}\n{current}[/INST]" # input_template
78
+ "[INST]{current}[/INST]" # input_current_text_template
79
+ "\n" # decoder_input_output_separator
80
+ )
style.py CHANGED
@@ -3,17 +3,39 @@ custom_css = """
3
  text-align: center;
4
  display: block;
5
  margin-bottom: 0;
6
- font-size: 2em;
7
  }
8
 
9
  .demo-subtitle {
10
  text-align: center;
11
  display: block;
12
  margin-top: 0;
13
- font-size: 1.5em;
14
  }
15
 
16
  .summary-label {
17
  display: inline;
18
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  """
 
3
  text-align: center;
4
  display: block;
5
  margin-bottom: 0;
6
+ font-size: 1.7em;
7
  }
8
 
9
  .demo-subtitle {
10
  text-align: center;
11
  display: block;
12
  margin-top: 0;
13
+ font-size: 1.3em;
14
  }
15
 
16
  .summary-label {
17
  display: inline;
18
  }
19
+
20
+ .prose a:visited {
21
+ color: var(--link-text-color);
22
+ }
23
+
24
+ .footer-container {
25
+ align-items: center;
26
+ }
27
+
28
+ .footer-custom-block {
29
+ display: flex;
30
+ justify-content: center;
31
+ align-items: center;
32
+ }
33
+
34
+ .footer-custom-block b {
35
+ margin-right: 10px;
36
+ }
37
+
38
+ .footer-custom-block a {
39
+ margin-right: 15px;
40
+ }
41
  """