import json SYSTEM_PROMPT = "You are a helpful assistant that provide concise and accurate answers." def set_cora_preset(): return ( "gsarti/cora_mgen", # model_name_or_path ": {current}

: {context}", # input_template ": {current}", # input_current_text_template ) def set_default_preset(): return ( "gpt2", # model_name_or_path "{current} {context}", # input_template "{current}", # output_template "{current}", # contextless_input_template "{current}", # contextless_output_template [], # special_tokens_to_keep "", # decoder_input_output_separator "{}", # model_kwargs "{}", # tokenizer_kwargs "{}", # generation_kwargs "{}", # attribution_kwargs ) def set_zephyr_preset(): return ( "stabilityai/stablelm-2-zephyr-1_6b", # model_name_or_path "<|system|>{system_prompt}<|endoftext|>\n<|user|>\n{context}\n\n{current}<|endoftext|>\n<|assistant|>\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_template "<|system|>{system_prompt}<|endoftext|>\n<|user|>\n{current}<|endoftext|>\n<|assistant|>\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_current_text_template ["<|im_start|>", "<|im_end|>", "<|endoftext|>"], # special_tokens_to_keep '{\n\t"max_new_tokens": 50\n}', # generation_kwargs ) def set_chatml_preset(): return ( "Qwen/Qwen1.5-0.5B-Chat", # model_name_or_path "<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{context}\n\n{current}<|im_end|>\n<|im_start|>assistant\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_template "<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{current}<|im_end|>\n<|im_start|>assistant\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_current_text_template ["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep '{\n\t"max_new_tokens": 50\n}', # generation_kwargs ) def set_mmt_preset(): return ( "facebook/mbart-large-50-one-to-many-mmt", # model_name_or_path "{context} {current}", # input_template "{context} {current}", # output_template '{\n\t"src_lang": "en_XX",\n\t"tgt_lang": "fr_XX"\n}', # tokenizer_kwargs ) def set_towerinstruct_preset(): return ( "Unbabel/TowerInstruct-7B-v0.1", # model_name_or_path "<|im_start|>user\nSource: {current}\nContext: {context}\nTranslate the above text into French. Use the context to guide your answer.\nTarget:<|im_end|>\n<|im_start|>assistant\n", # input_template "<|im_start|>user\nSource: {current}\nTranslate the above text into French.\nTarget:<|im_end|>\n<|im_start|>assistant\n", # input_current_text_template ["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep '{\n\t"max_new_tokens": 50\n}', # generation_kwargs ) def set_gemma_preset(): return ( "google/gemma-2b-it", # model_name_or_path "user\n{context}\n{current}\nmodel\n", # input_template "user\n{current}\nmodel\n", # input_current_text_template ["", ""], # special_tokens_to_keep '{\n\t"max_new_tokens": 50\n}', # generation_kwargs ) def set_mistral_instruct_preset(): return ( "mistralai/Mistral-7B-Instruct-v0.2" # model_name_or_path "[INST]{context}\n{current}[/INST]" # input_template "[INST]{current}[/INST]" # input_current_text_template '{\n\t"max_new_tokens": 50\n}', # generation_kwargs ) def update_code_snippets_fn( input_current_text: str, input_context_text: str, output_current_text: str, output_context_text: str, model_name_or_path: str, attribution_method: str, attributed_fn: str | None, context_sensitivity_metric: str, context_sensitivity_std_threshold: float, context_sensitivity_topk: int, attribution_std_threshold: float, attribution_topk: int, input_template: str, output_template: str, contextless_input_template: str, contextless_output_template: str, special_tokens_to_keep: str | list[str] | None, decoder_input_output_separator: str, model_kwargs: str, tokenizer_kwargs: str, generation_kwargs: str, attribution_kwargs: str, ) -> tuple[str, str]: if not input_current_text: input_current_text = "" nl = "\n" tq = "\"\"\"" def escape_quotes(s: str) -> str: return s.replace('"', '\\"') def py_get_kwargs_str(kwargs: str, name: str, pad: str = " " * 4) -> str: kwargs_dict = json.loads(kwargs) return nl + pad + name + '=' + str(kwargs_dict) + ',' if kwargs_dict else '' def py_get_if_specified(arg: str | int | float | list | None, name: str, pad: str = " " * 4) -> str: if arg is None or (isinstance(arg, (str, list)) and not arg) or (isinstance(arg, (int, float)) and arg <= 0): return "" elif isinstance(arg, str): return nl + pad + name + "=" + tq + arg + tq + "," elif isinstance(arg, list): return nl + pad + name + "=" + str(arg) + "," else: return nl + pad + name + "=" + str(arg) + "," def sh_get_kwargs_str(kwargs: str, name: str, pad: str = " " * 4) -> str: return nl + pad + f"--{name} " + '"' + escape_quotes("".join(x.strip() for x in str(kwargs).split("\n"))) + '"' + " \\" if json.loads(kwargs) else '' def sh_get_if_specified(arg: str | int | float | list | None, name: str, pad: str = " " * 4) -> str: if arg is None or (isinstance(arg, (str, list)) and not arg) or (isinstance(arg, (int, float)) and arg <= 0): return "" elif isinstance(arg, str): return nl + pad + f"--{name} " + '"' + escape_quotes(arg) + '"' + " \\" elif isinstance(arg, list): return nl + pad + f"--{name} " + " ".join(str(arg)) + " \\" else: return nl + pad + f"--{name} " + str(arg) + " \\" # Python python = f"""#!pip install inseq import inseq from inseq.commands.attribute_contex.attribute_context import attribute_context_with_model, AttributeContextArgs inseq_model = inseq.load_model( "{model_name_or_path}", "{attribution_method}",{py_get_kwargs_str(model_kwargs, "model_kwargs")}{py_get_kwargs_str(tokenizer_kwargs, "tokenizer_kwargs")} ) pecore_args = AttributeContextArgs( model_name_or_path="{model_name_or_path}", attribution_method="{attribution_method}", attributed_fn="{attributed_fn}", context_sensitivity_metric="{context_sensitivity_metric}", context_sensitivity_std_threshold={context_sensitivity_std_threshold},{py_get_if_specified(context_sensitivity_topk, "context_sensitivity_topk")} attribution_std_threshold={attribution_std_threshold},{py_get_if_specified(attribution_topk, "attribution_topk")} input_current_text=\"\"\"{input_current_text}\"\"\",{py_get_if_specified(input_context_text, "input_context_text")} contextless_input_current_text=\"\"\"{contextless_input_template}\"\"\", input_template=\"\"\"{input_template}\"\"\",{py_get_if_specified(output_current_text, "output_current_text")}{py_get_if_specified(output_context_text, "output_context_text")} contextless_output_current_text=\"\"\"{contextless_output_template}\"\"\", output_template="{output_template}",{py_get_if_specified(special_tokens_to_keep, "special_tokens_to_keep")}{py_get_if_specified(decoder_input_output_separator, "decoder_input_output_separator")} save_path="pecore_output.json", viz_path="pecore_output.html",{py_get_kwargs_str(model_kwargs, "model_kwargs")}{py_get_kwargs_str(tokenizer_kwargs, "tokenizer_kwargs")}{py_get_kwargs_str(generation_kwargs, "generation_kwargs")}{py_get_kwargs_str(attribution_kwargs, "attribution_kwargs")} ) out = attribute_context_with_model(pecore_args, inseq_model)""" # Bash bash = f"""# pip install inseq inseq attribute-context \\ --model_name_or_path "{model_name_or_path}" \\ --attribution_method "{attribution_method}" \\ --attributed_fn "{attributed_fn}" \\ --context_sensitivity_metric "{context_sensitivity_metric}" \\ --context_sensitivity_std_threshold {context_sensitivity_std_threshold} \\{sh_get_if_specified(context_sensitivity_topk, "context_sensitivity_topk")} --attribution_std_threshold {attribution_std_threshold} \\{sh_get_if_specified(attribution_topk, "attribution_topk")} --input_current_text "{escape_quotes(input_current_text)}" \\{sh_get_if_specified(input_context_text, "input_context_text")} --contextless_input_current_text "{escape_quotes(contextless_input_template)}" \\ --input_template "{escape_quotes(input_template)}" \\{sh_get_if_specified(output_current_text, "output_current_text")}{sh_get_if_specified(output_context_text, "output_context_text")} --contextless_output_current_text "{escape_quotes(contextless_output_template)}" \\ --output_template "{escape_quotes(output_template)}" \\{sh_get_if_specified(special_tokens_to_keep, "special_tokens_to_keep")}{sh_get_if_specified(decoder_input_output_separator, "decoder_input_output_separator")} --save_path "pecore_output.json" \\ --viz_path "pecore_output.html" \\{sh_get_kwargs_str(model_kwargs, "model_kwargs")}{sh_get_kwargs_str(tokenizer_kwargs, "tokenizer_kwargs")}{sh_get_kwargs_str(generation_kwargs, "generation_kwargs")}{sh_get_kwargs_str(attribution_kwargs, "attribution_kwargs")}""".strip("\\") return python, bash