Spaces:
Paused
Paused
guardiancc
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1423,7 +1423,7 @@ base_model = "black-forest-labs/FLUX.1-dev"
|
|
1423 |
#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
|
1424 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
1425 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
1426 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
|
1427 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
|
1428 |
vae=good_vae,
|
1429 |
transformer=pipe.transformer,
|
@@ -1440,7 +1440,7 @@ controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
|
|
1440 |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
|
1441 |
pipe_canny = FluxControlNetPipeline.from_pretrained(
|
1442 |
base_model, controlnet=controlnet, torch_dtype=dtype
|
1443 |
-
)
|
1444 |
|
1445 |
MAX_SEED = 2**32-1
|
1446 |
|
@@ -1507,6 +1507,7 @@ def generate_canny(image, type="canny"):
|
|
1507 |
@spaces.GPU(duration=100)
|
1508 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
1509 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
1510 |
with calculateDuration("Generating image"):
|
1511 |
# Generate image
|
1512 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
@@ -1524,6 +1525,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
1524 |
|
1525 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
1526 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
1527 |
image_input = load_image(image_input_path)
|
1528 |
final_image = pipe_i2i(
|
1529 |
prompt=prompt_mash,
|
@@ -1541,8 +1543,9 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
1541 |
|
1542 |
def generate_image_canny(prompt_mash, canny, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
1543 |
control_image = load_image(canny)
|
|
|
1544 |
|
1545 |
-
image =
|
1546 |
prompt=prompt_mash,
|
1547 |
control_image=control_image,
|
1548 |
controlnet_conditioning_scale=0.6,
|
|
|
1423 |
#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
|
1424 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
1425 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
1426 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
|
1427 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
|
1428 |
vae=good_vae,
|
1429 |
transformer=pipe.transformer,
|
|
|
1440 |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
|
1441 |
pipe_canny = FluxControlNetPipeline.from_pretrained(
|
1442 |
base_model, controlnet=controlnet, torch_dtype=dtype
|
1443 |
+
)
|
1444 |
|
1445 |
MAX_SEED = 2**32-1
|
1446 |
|
|
|
1507 |
@spaces.GPU(duration=100)
|
1508 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
1509 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
1510 |
+
pipe.to('cuda')
|
1511 |
with calculateDuration("Generating image"):
|
1512 |
# Generate image
|
1513 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
|
|
1525 |
|
1526 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
1527 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
1528 |
+
pipe_i2i.to('cuda')
|
1529 |
image_input = load_image(image_input_path)
|
1530 |
final_image = pipe_i2i(
|
1531 |
prompt=prompt_mash,
|
|
|
1543 |
|
1544 |
def generate_image_canny(prompt_mash, canny, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
1545 |
control_image = load_image(canny)
|
1546 |
+
pipe_canny.to('cuda')
|
1547 |
|
1548 |
+
image = pipe_canny(
|
1549 |
prompt=prompt_mash,
|
1550 |
control_image=control_image,
|
1551 |
controlnet_conditioning_scale=0.6,
|