Spaces:
Running
Running
Uploaded
Browse files- Chatbot.py +33 -0
- Image_QA_Gemini.py +30 -0
- MCQ_Gen.py +156 -0
- QA_Gemini.py +23 -0
- chat_with_pdf.py +93 -0
- requirements.txt +7 -0
- streamlit.py +23 -0
Chatbot.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
load_dotenv()
|
4 |
+
import os
|
5 |
+
import google.generativeai as genai
|
6 |
+
|
7 |
+
os.getenv("GOOGLE_API_KEY")
|
8 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
9 |
+
def show():
|
10 |
+
st.header("Chatbot")
|
11 |
+
model=genai.GenerativeModel('gemini-1.0-pro-latest')
|
12 |
+
chat=model.start_chat(history=[])
|
13 |
+
if 'chat_history' not in st.session_state:
|
14 |
+
st.session_state['chat_history'] = []
|
15 |
+
input=st.text_input("Input Prompt: ",key="input")
|
16 |
+
|
17 |
+
submit=st.button("Submit")
|
18 |
+
|
19 |
+
if submit and input:
|
20 |
+
|
21 |
+
|
22 |
+
response=chat.send_message(input,stream=True)
|
23 |
+
st.session_state['chat_history'].append(("You", input))
|
24 |
+
st.subheader("The Response is")
|
25 |
+
for chunk in response:
|
26 |
+
st.write(chunk.text)
|
27 |
+
st.session_state['chat_history'].append(("Bot", chunk.text))
|
28 |
+
|
29 |
+
|
30 |
+
st.subheader("The Chat History is")
|
31 |
+
|
32 |
+
for role, text in st.session_state['chat_history']:
|
33 |
+
st.write(f"{role}: {text}")
|
Image_QA_Gemini.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
load_dotenv()
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import google.generativeai as genai
|
7 |
+
|
8 |
+
os.getenv("GOOGLE_API_KEY")
|
9 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
10 |
+
def show():
|
11 |
+
st.header("Image QA")
|
12 |
+
input=st.text_input("Input Prompt: ",key="input")
|
13 |
+
file=st.file_uploader("Chose an image...",type=["jpg","jpeg","png"])
|
14 |
+
image=""
|
15 |
+
if file is not None:
|
16 |
+
image=Image.open(file)
|
17 |
+
st.image(image)
|
18 |
+
|
19 |
+
submit=st.button("Submit")
|
20 |
+
|
21 |
+
if submit:
|
22 |
+
model=genai.GenerativeModel('gemini-pro-vision')
|
23 |
+
st.subheader("The Response is")
|
24 |
+
if input!="":
|
25 |
+
response=model.generate_content([input,image])
|
26 |
+
st.write(response.text)
|
27 |
+
|
28 |
+
else:
|
29 |
+
response=model.generate_content(image)
|
30 |
+
st.write(response.text)
|
MCQ_Gen.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fpdf import FPDF
|
2 |
+
class PDF(FPDF):
|
3 |
+
def header(self):
|
4 |
+
self.set_font('Arial', 'B', 12)
|
5 |
+
self.cell(0, 10, 'MCQ Quiz', 0, 1, 'C')
|
6 |
+
|
7 |
+
def chapter_title(self, num, label):
|
8 |
+
self.set_font('Arial', '', 12)
|
9 |
+
self.cell(0, 10, 'Question %d: %s' % (num, label), 0, 1, 'L')
|
10 |
+
self.ln(5)
|
11 |
+
|
12 |
+
def chapter_body(self, body):
|
13 |
+
self.set_font('Arial', '', 12)
|
14 |
+
self.multi_cell(0, 10, body)
|
15 |
+
self.ln()
|
16 |
+
|
17 |
+
def add_question(self, num, question, options):
|
18 |
+
self.chapter_title(num, question)
|
19 |
+
for key, option in options.items():
|
20 |
+
self.chapter_body(f"{key}. {option}")
|
21 |
+
self.ln()
|
22 |
+
|
23 |
+
def add_answers_section(self, answers):
|
24 |
+
self.add_page()
|
25 |
+
self.set_font('Arial', 'B', 12)
|
26 |
+
self.cell(0, 10, 'Answers', 0, 1, 'C')
|
27 |
+
self.ln(10)
|
28 |
+
self.set_font('Arial', '', 12)
|
29 |
+
for num, answer in answers.items():
|
30 |
+
self.cell(0, 10, f"Question {num}: {answer}", 0, 1, 'L')
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
import streamlit as st
|
35 |
+
from dotenv import load_dotenv
|
36 |
+
load_dotenv()
|
37 |
+
import os
|
38 |
+
import json
|
39 |
+
import base64
|
40 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
41 |
+
os.getenv("GOOGLE_API_KEY")
|
42 |
+
RESPONSE_JSON = {
|
43 |
+
"1": {
|
44 |
+
"mcq": "multiple choice question",
|
45 |
+
"options": {
|
46 |
+
"a": "choice here",
|
47 |
+
"b": "choice here",
|
48 |
+
"c": "choice here",
|
49 |
+
"d": "choice here",
|
50 |
+
},
|
51 |
+
"correct": "correct answer",
|
52 |
+
},
|
53 |
+
"2": {
|
54 |
+
"mcq": "multiple choice question",
|
55 |
+
"options": {
|
56 |
+
"a": "choice here",
|
57 |
+
"b": "choice here",
|
58 |
+
"c": "choice here",
|
59 |
+
"d": "choice here",
|
60 |
+
},
|
61 |
+
"correct": "correct answer",
|
62 |
+
},
|
63 |
+
"3": {
|
64 |
+
"mcq": "multiple choice question",
|
65 |
+
"options": {
|
66 |
+
"a": "choice here",
|
67 |
+
"b": "choice here",
|
68 |
+
"c": "choice here",
|
69 |
+
"d": "choice here",
|
70 |
+
},
|
71 |
+
"correct": "correct answer",
|
72 |
+
},
|
73 |
+
}
|
74 |
+
TEMPLATE="""
|
75 |
+
Text:{text}
|
76 |
+
You are an expert MCQ maker. Given the above text, it is your job to \
|
77 |
+
create a quiz of {number} multiple choice questions for {subject} students in {tone} tone.
|
78 |
+
Make sure the questions are not repeated and check all the questions to be conforming the text as well.
|
79 |
+
Make sure to format your response like RESPONSE_JSON below and use it as a guide. \
|
80 |
+
Ensure to make {number} MCQs
|
81 |
+
### RESPONSE_JSON
|
82 |
+
{response_json}
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
TEMPLATE2="""
|
87 |
+
You are an expert english grammarian and writer. Given a Multiple Choice Quiz for {subject} students.\
|
88 |
+
You need to evaluate the complexity of the question and give a complete analysis of the quiz. Only use at max 50 words for complexity analysis.
|
89 |
+
if the quiz is not at per with the cognitive and analytical abilities of the students,\
|
90 |
+
update the quiz questions which needs to be changed and change the tone such that it perfectly fits the student abilities
|
91 |
+
Quiz_MCQs:
|
92 |
+
{quiz}
|
93 |
+
|
94 |
+
Check from an expert English Writer of the above quiz:
|
95 |
+
"""
|
96 |
+
def show():
|
97 |
+
st.header("MCQ_Generator")
|
98 |
+
TEXT=st.text_input("Input Prompt: ",key="input1")
|
99 |
+
NUMBER=st.text_input("Number of MCQs ",key="input2")
|
100 |
+
SUBJECT=st.text_input("Topic of MCQs ",key="input3")
|
101 |
+
TONE=st.text_input("Difficulty Level ",key="input4")
|
102 |
+
|
103 |
+
submit=st.button("Submit")
|
104 |
+
|
105 |
+
if submit and TEXT:
|
106 |
+
llm = ChatGoogleGenerativeAI(model="gemini-pro",temperature=0.9)
|
107 |
+
from langchain.prompts import PromptTemplate
|
108 |
+
from langchain.chains import LLMChain
|
109 |
+
from langchain.chains import SequentialChain
|
110 |
+
quiz_generation_prompt = PromptTemplate(
|
111 |
+
input_variables=["text", "number", "subject", "tone", "response_json"],
|
112 |
+
template=TEMPLATE
|
113 |
+
)
|
114 |
+
quiz_chain=LLMChain(llm=llm, prompt=quiz_generation_prompt, output_key="quiz", verbose=True)
|
115 |
+
quiz_evaluation_prompt=PromptTemplate(input_variables=["subject", "quiz"], template=TEMPLATE)
|
116 |
+
review_chain=LLMChain(llm=llm, prompt=quiz_evaluation_prompt, output_key="review", verbose=True)
|
117 |
+
generate_evaluate_chain=SequentialChain(chains=[quiz_chain, review_chain], input_variables=["text", "number", "subject", "tone", "response_json"],
|
118 |
+
output_variables=["quiz", "review"], verbose=True,)
|
119 |
+
response=generate_evaluate_chain(
|
120 |
+
{
|
121 |
+
"text": TEXT,
|
122 |
+
"number": NUMBER,
|
123 |
+
"subject":SUBJECT,
|
124 |
+
"tone": TONE,
|
125 |
+
"response_json": json.dumps(RESPONSE_JSON)
|
126 |
+
}
|
127 |
+
)
|
128 |
+
quiz=response.get("quiz")
|
129 |
+
if '### RESPONSE_JSON\n' in quiz:
|
130 |
+
quiz = quiz.split('### RESPONSE_JSON\n')[1]
|
131 |
+
quiz = json.loads(quiz)
|
132 |
+
else:
|
133 |
+
quiz=json.loads(quiz)
|
134 |
+
pdf = PDF()
|
135 |
+
pdf.add_page()
|
136 |
+
pdf.set_title(SUBJECT+" Quiz")
|
137 |
+
answers = {}
|
138 |
+
for key, value in quiz.items():
|
139 |
+
question_num = int(key)
|
140 |
+
pdf.add_question(question_num, value["mcq"], value["options"])
|
141 |
+
answers[question_num] = value["correct"]
|
142 |
+
pdf.add_answers_section(answers)
|
143 |
+
|
144 |
+
pdf_file_path =SUBJECT+"_mcq.pdf"
|
145 |
+
pdf.output(pdf_file_path)
|
146 |
+
|
147 |
+
with open(pdf_file_path, "rb") as pdf_file:
|
148 |
+
st.download_button(
|
149 |
+
label="Download "+SUBJECT+" Quiz PDF",
|
150 |
+
data=pdf_file,
|
151 |
+
file_name=SUBJECT+"_quiz.pdf",
|
152 |
+
mime="application/pdf",
|
153 |
+
)
|
154 |
+
|
155 |
+
pdf_display = f'<iframe src="data:application/pdf;base64,{base64.b64encode(open(pdf_file_path, "rb").read()).decode()}" width="700" height="1000" type="application/pdf"></iframe>'
|
156 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
QA_Gemini.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
load_dotenv()
|
4 |
+
import os
|
5 |
+
import google.generativeai as genai
|
6 |
+
|
7 |
+
os.getenv("GOOGLE_API_KEY")
|
8 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
9 |
+
def show():
|
10 |
+
st.header("QA Gemeni")
|
11 |
+
input=st.text_input("Input Prompt: ",key="input")
|
12 |
+
|
13 |
+
submit=st.button("Submit")
|
14 |
+
|
15 |
+
if submit:
|
16 |
+
model=genai.GenerativeModel('gemini-1.0-pro-latest')
|
17 |
+
st.subheader("The Response is")
|
18 |
+
if input!="":
|
19 |
+
response=model.generate_content(input)
|
20 |
+
st.write(response.text)
|
21 |
+
|
22 |
+
else:
|
23 |
+
st.write("Ask a Question First!!")
|
chat_with_pdf.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
+
import google.generativeai as genai
|
7 |
+
from langchain.vectorstores import Pinecone as PC
|
8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
+
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
os.getenv("GOOGLE_API_KEY")
|
14 |
+
os.getenv("PINECONE_API_KEY")
|
15 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
16 |
+
os.environ['PINECONE_API_KEY'] = os.getenv("PINECONE_API_KEY")
|
17 |
+
|
18 |
+
|
19 |
+
def Pine():
|
20 |
+
from pinecone import Pinecone, ServerlessSpec
|
21 |
+
|
22 |
+
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
23 |
+
index_name = "testing"
|
24 |
+
|
25 |
+
if index_name not in pc.list_indexes().names():
|
26 |
+
pc.create_index(
|
27 |
+
name=index_name,
|
28 |
+
dimension=768,
|
29 |
+
metric="cosine",
|
30 |
+
spec=ServerlessSpec(cloud='aws', region='us-east-1')
|
31 |
+
)
|
32 |
+
return index_name
|
33 |
+
|
34 |
+
|
35 |
+
def get_pdf_text(pdf_docs):
|
36 |
+
text = ""
|
37 |
+
for pdf in pdf_docs:
|
38 |
+
pdf_reader = PdfReader(pdf)
|
39 |
+
for page in pdf_reader.pages:
|
40 |
+
text += page.extract_text()
|
41 |
+
return text
|
42 |
+
|
43 |
+
|
44 |
+
def get_text_chunks(text):
|
45 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
46 |
+
chunks = text_splitter.split_text(text)
|
47 |
+
return chunks
|
48 |
+
|
49 |
+
|
50 |
+
def get_vector_store(text_chunks):
|
51 |
+
index_name = Pine()
|
52 |
+
embedding = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
53 |
+
docsearch = PC.from_texts([t for t in text_chunks], embedding, index_name=index_name)
|
54 |
+
return docsearch
|
55 |
+
|
56 |
+
|
57 |
+
def showman(pdf_docs):
|
58 |
+
st.header("Chat with PDF")
|
59 |
+
|
60 |
+
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
|
61 |
+
ask_another_question = st.button("Ask Another Question",on_click=clear_text)
|
62 |
+
|
63 |
+
if user_question and not ask_another_question:
|
64 |
+
llm = ChatGoogleGenerativeAI(model="models/gemini-1.5-pro-latest", temperature=0.9)
|
65 |
+
from langchain.chains import RetrievalQA
|
66 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=st.session_state["docsearch"].as_retriever())
|
67 |
+
response = qa(user_question)
|
68 |
+
st.session_state["response"] = response["result"]
|
69 |
+
st.write("Answer:", st.session_state["response"])
|
70 |
+
|
71 |
+
|
72 |
+
def clear_text():
|
73 |
+
st.session_state["user_question"] = ""
|
74 |
+
st.session_state["response"] = ""
|
75 |
+
|
76 |
+
def show():
|
77 |
+
with st.sidebar:
|
78 |
+
st.title("Menu:")
|
79 |
+
pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True)
|
80 |
+
st.session_state["pdf_docs"] = pdf_docs if pdf_docs is not None else st.session_state.get("pdf_docs", [])
|
81 |
+
processed = st.session_state.get("processed", False)
|
82 |
+
|
83 |
+
if not processed and pdf_docs:
|
84 |
+
if st.button("Submit & Process"):
|
85 |
+
with st.spinner("Processing..."):
|
86 |
+
raw_text = get_pdf_text(pdf_docs)
|
87 |
+
text_chunks = get_text_chunks(raw_text)
|
88 |
+
docsearch = get_vector_store(text_chunks)
|
89 |
+
st.session_state["docsearch"] = docsearch
|
90 |
+
st.session_state["processed"] = True
|
91 |
+
st.success("Done!")
|
92 |
+
|
93 |
+
showman(st.session_state["pdf_docs"])
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PyPDF2
|
2 |
+
langchain
|
3 |
+
langchain_google_genai
|
4 |
+
dotenv
|
5 |
+
pinecone
|
6 |
+
google.generativeai
|
7 |
+
fpdf
|
streamlit.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(page_title="Gemini_Student", page_icon=":material/edit:")
|
4 |
+
|
5 |
+
st.sidebar.title("Welcome to Gemeni_Student")
|
6 |
+
selection = st.sidebar.radio("",["Chatbot","Image_QA_Gemini","QA_Gemini","MCQ_Gen","chat_with_pdf"])
|
7 |
+
|
8 |
+
if selection == "Chatbot":
|
9 |
+
import Chatbot
|
10 |
+
Chatbot.show()
|
11 |
+
elif selection == "Image_QA_Gemini":
|
12 |
+
import Image_QA_Gemini
|
13 |
+
Image_QA_Gemini.show()
|
14 |
+
elif selection == "QA_Gemini":
|
15 |
+
import QA_Gemini
|
16 |
+
QA_Gemini.show()
|
17 |
+
elif selection == "MCQ_Gen":
|
18 |
+
import MCQ_Gen
|
19 |
+
MCQ_Gen.show()
|
20 |
+
elif selection == "chat_with_pdf":
|
21 |
+
import chat_with_pdf
|
22 |
+
chat_with_pdf.show()
|
23 |
+
|