Spaces:
Running
Running
File size: 1,409 Bytes
f845b05 944dedf 4492d6d 4eb15f6 944dedf a3cf651 944dedf 1782e10 f845b05 944dedf 1782e10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice
def synthesize_speech(text):
model_path = hf_hub_download(repo_id="aigmixer/speaker_00", filename="speaker_00_model.onnx")
config_path = hf_hub_download(repo_id="aigmixer/speaker_00", filename="speaker_00_model.onnx.json")
voice = PiperVoice.load(model_path, config_path)
# Create an in-memory buffer for the WAV file
buffer = BytesIO()
with wave.open(buffer, 'wb') as wav_file:
wav_file.setframerate(voice.config.sample_rate)
wav_file.setsampwidth(2) # 16-bit
wav_file.setnchannels(1) # mono
# Synthesize speech
voice.synthesize(text, wav_file)
# Convert buffer to NumPy array for Gradio output
buffer.seek(0)
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
return audio_data.tobytes()
# Using Gradio Blocks
with gr.Blocks(theme=gr.themes.Base()) as blocks:
gr.Markdown("# Text to Speech Synthesizer")
gr.Markdown("Enter text to synthesize it into speech using PiperVoice.")
input_text = gr.Textbox(label="Input Text")
output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
submit_button = gr.Button("Synthesize")
submit_button.click(synthesize_speech, inputs=input_text, outputs=output_audio)
# Run the app
blocks.launch()
|