File size: 7,775 Bytes
964201e
 
 
 
 
 
 
a976004
964201e
 
 
a976004
964201e
 
 
 
 
 
a976004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964201e
a976004
 
 
 
 
 
 
964201e
 
68dd12a
a976004
964201e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b25c65
964201e
 
 
 
 
 
 
 
 
 
a976004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964201e
 
 
 
 
 
 
 
a976004
 
 
964201e
 
 
 
 
 
 
 
 
daa52ce
 
964201e
 
 
a976004
 
 
68dd12a
964201e
 
 
 
 
 
 
a976004
 
 
 
 
 
 
 
 
964201e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from font_dataset.fontlabel import FontLabel
from font_dataset.font import DSFont, load_font_with_exclusion
from . import config


import math
import os
import random
import pickle
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from typing import List, Dict, Tuple
from torch.utils.data import Dataset, DataLoader
from pytorch_lightning import LightningDataModule
from PIL import Image


class RandomColorJitter(object):
    def __init__(
        self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.05, preserve=0.2
    ):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue
        self.preserve = preserve

    def __call__(self, batch):
        if random.random() < self.preserve:
            return batch

        image, label = batch
        text_color = label[2:5].clone().view(3, 1, 1)
        stroke_color = label[7:10].clone().view(3, 1, 1)

        brightness = random.uniform(1 - self.brightness, 1 + self.brightness)
        image = TF.adjust_brightness(image, brightness)
        text_color = TF.adjust_brightness(text_color, brightness)
        stroke_color = TF.adjust_brightness(stroke_color, brightness)

        contrast = random.uniform(1 - self.contrast, 1 + self.contrast)
        image = TF.adjust_contrast(image, contrast)
        text_color = TF.adjust_contrast(text_color, contrast)
        stroke_color = TF.adjust_contrast(stroke_color, contrast)

        saturation = random.uniform(1 - self.saturation, 1 + self.saturation)
        image = TF.adjust_saturation(image, saturation)
        text_color = TF.adjust_saturation(text_color, saturation)
        stroke_color = TF.adjust_saturation(stroke_color, saturation)

        hue = random.uniform(-self.hue, self.hue)
        image = TF.adjust_hue(image, hue)
        text_color = TF.adjust_hue(text_color, hue)
        stroke_color = TF.adjust_hue(stroke_color, hue)

        label[2:5] = text_color.view(3)
        label[7:10] = stroke_color.view(3)
        return image, label


class RandomCrop(object):
    def __init__(self, crop_factor: float = 0.1, preserve: float = 0.2):
        self.crop_factor = crop_factor
        self.preserve = preserve

    def __call__(self, batch):
        if random.random() < self.preserve:
            return batch

        image, label = batch
        width, height = image.size

        # use random value to decide scaling factor on x and y axis
        random_height = random.random() * self.crop_factor
        random_width = random.random() * self.crop_factor
        # use random value again to decide scaling factor for 4 borders
        random_top = random.random() * random_height
        random_left = random.random() * random_width
        # calculate new width and height and position
        top = int(random_top * height)
        left = int(random_left * width)
        height = int(height - random_height * height)
        width = int(width - random_width * width)
        # crop image
        image = TF.crop(image, top, left, height, width)

        label[[5, 6, 10]] = label[[5, 6, 10]] * (1 - random_height)
        return image, label


class FontDataset(Dataset):
    def __init__(
        self,
        path: str,
        config_path: str = "configs/font.yml",
        regression_use_tanh: bool = False,
        transforms: bool = False,
    ):
        self.path = path
        self.fonts = load_font_with_exclusion(config_path)
        self.regression_use_tanh = regression_use_tanh
        self.transforms = transforms

        self.images = [
            os.path.join(path, f) for f in os.listdir(path) if f.endswith(".jpg")
        ]
        self.images.sort()

    def __len__(self):
        return len(self.images)

    def fontlabel2tensor(self, label: FontLabel, label_path) -> torch.Tensor:
        out = torch.zeros(12, dtype=torch.float)
        try:
            out[0] = self.fonts[label.font.path]
        except KeyError:
            print(f"Unqualified font: {label.font.path}")
            print(f"Label path: {label_path}")
            raise KeyError
        out[1] = 0 if label.text_direction == "ltr" else 1
        # [0, 1]
        out[2] = label.text_color[0] / 255.0
        out[3] = label.text_color[1] / 255.0
        out[4] = label.text_color[2] / 255.0
        out[5] = label.text_size / label.image_width
        out[6] = label.stroke_width / label.image_width
        if label.stroke_color:
            out[7] = label.stroke_color[0] / 255.0
            out[8] = label.stroke_color[1] / 255.0
            out[9] = label.stroke_color[2] / 255.0
        else:
            out[7:10] = out[2:5]
        out[10] = label.line_spacing / label.image_width
        out[11] = label.angle / 180.0 + 0.5

        return out

    def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
        # Load image
        image_path = self.images[index]
        image = Image.open(image_path).convert("RGB")

        # Load label
        label_path = image_path.replace(".jpg", ".bin")
        with open(label_path, "rb") as f:
            label: FontLabel = pickle.load(f)

        # encode label
        label = self.fontlabel2tensor(label, label_path)

        # data augmentation
        if self.transforms:
            transform = transforms.Compose(
                [
                    RandomColorJitter(),
                    RandomCrop(),
                ]
            )
            image, label = transform((image, label))

        # resize and to tensor
        transform = transforms.Compose(
            [
                transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
                transforms.ToTensor(),
            ]
        )
        image = transform(image)

        # normalize label
        if self.regression_use_tanh:
            label[2:12] = label[2:12] * 2 - 1

        return image, label


class FontDataModule(LightningDataModule):
    def __init__(
        self,
        config_path: str = "configs/font.yml",
        train_path: str = "./dataset/font_img/train",
        val_path: str = "./dataset/font_img/val",
        test_path: str = "./dataset/font_img/test",
        train_shuffle: bool = True,
        val_shuffle: bool = False,
        test_shuffle: bool = False,
        train_transforms: bool = False,
        val_transforms: bool = False,
        test_transforms: bool = False,
        regression_use_tanh: bool = False,
        **kwargs,
    ):
        super().__init__()
        self.dataloader_args = kwargs
        self.train_shuffle = train_shuffle
        self.val_shuffle = val_shuffle
        self.test_shuffle = test_shuffle
        self.train_dataset = FontDataset(
            train_path, config_path, regression_use_tanh, train_transforms
        )
        self.val_dataset = FontDataset(
            val_path, config_path, regression_use_tanh, val_transforms
        )
        self.test_dataset = FontDataset(
            test_path, config_path, regression_use_tanh, test_transforms
        )

    def get_train_num_iter(self, num_device: int) -> int:
        return math.ceil(
            len(self.train_dataset) / (self.dataloader_args["batch_size"] * num_device)
        )

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            shuffle=self.train_shuffle,
            **self.dataloader_args,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            shuffle=self.val_shuffle,
            **self.dataloader_args,
        )

    def test_dataloader(self):
        return DataLoader(
            self.test_dataset,
            shuffle=self.test_shuffle,
            **self.dataloader_args,
        )