File size: 7,775 Bytes
964201e a976004 964201e a976004 964201e a976004 964201e a976004 964201e 68dd12a a976004 964201e 3b25c65 964201e a976004 964201e a976004 964201e daa52ce 964201e a976004 68dd12a 964201e a976004 964201e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from font_dataset.fontlabel import FontLabel
from font_dataset.font import DSFont, load_font_with_exclusion
from . import config
import math
import os
import random
import pickle
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from typing import List, Dict, Tuple
from torch.utils.data import Dataset, DataLoader
from pytorch_lightning import LightningDataModule
from PIL import Image
class RandomColorJitter(object):
def __init__(
self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.05, preserve=0.2
):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
self.preserve = preserve
def __call__(self, batch):
if random.random() < self.preserve:
return batch
image, label = batch
text_color = label[2:5].clone().view(3, 1, 1)
stroke_color = label[7:10].clone().view(3, 1, 1)
brightness = random.uniform(1 - self.brightness, 1 + self.brightness)
image = TF.adjust_brightness(image, brightness)
text_color = TF.adjust_brightness(text_color, brightness)
stroke_color = TF.adjust_brightness(stroke_color, brightness)
contrast = random.uniform(1 - self.contrast, 1 + self.contrast)
image = TF.adjust_contrast(image, contrast)
text_color = TF.adjust_contrast(text_color, contrast)
stroke_color = TF.adjust_contrast(stroke_color, contrast)
saturation = random.uniform(1 - self.saturation, 1 + self.saturation)
image = TF.adjust_saturation(image, saturation)
text_color = TF.adjust_saturation(text_color, saturation)
stroke_color = TF.adjust_saturation(stroke_color, saturation)
hue = random.uniform(-self.hue, self.hue)
image = TF.adjust_hue(image, hue)
text_color = TF.adjust_hue(text_color, hue)
stroke_color = TF.adjust_hue(stroke_color, hue)
label[2:5] = text_color.view(3)
label[7:10] = stroke_color.view(3)
return image, label
class RandomCrop(object):
def __init__(self, crop_factor: float = 0.1, preserve: float = 0.2):
self.crop_factor = crop_factor
self.preserve = preserve
def __call__(self, batch):
if random.random() < self.preserve:
return batch
image, label = batch
width, height = image.size
# use random value to decide scaling factor on x and y axis
random_height = random.random() * self.crop_factor
random_width = random.random() * self.crop_factor
# use random value again to decide scaling factor for 4 borders
random_top = random.random() * random_height
random_left = random.random() * random_width
# calculate new width and height and position
top = int(random_top * height)
left = int(random_left * width)
height = int(height - random_height * height)
width = int(width - random_width * width)
# crop image
image = TF.crop(image, top, left, height, width)
label[[5, 6, 10]] = label[[5, 6, 10]] * (1 - random_height)
return image, label
class FontDataset(Dataset):
def __init__(
self,
path: str,
config_path: str = "configs/font.yml",
regression_use_tanh: bool = False,
transforms: bool = False,
):
self.path = path
self.fonts = load_font_with_exclusion(config_path)
self.regression_use_tanh = regression_use_tanh
self.transforms = transforms
self.images = [
os.path.join(path, f) for f in os.listdir(path) if f.endswith(".jpg")
]
self.images.sort()
def __len__(self):
return len(self.images)
def fontlabel2tensor(self, label: FontLabel, label_path) -> torch.Tensor:
out = torch.zeros(12, dtype=torch.float)
try:
out[0] = self.fonts[label.font.path]
except KeyError:
print(f"Unqualified font: {label.font.path}")
print(f"Label path: {label_path}")
raise KeyError
out[1] = 0 if label.text_direction == "ltr" else 1
# [0, 1]
out[2] = label.text_color[0] / 255.0
out[3] = label.text_color[1] / 255.0
out[4] = label.text_color[2] / 255.0
out[5] = label.text_size / label.image_width
out[6] = label.stroke_width / label.image_width
if label.stroke_color:
out[7] = label.stroke_color[0] / 255.0
out[8] = label.stroke_color[1] / 255.0
out[9] = label.stroke_color[2] / 255.0
else:
out[7:10] = out[2:5]
out[10] = label.line_spacing / label.image_width
out[11] = label.angle / 180.0 + 0.5
return out
def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
# Load image
image_path = self.images[index]
image = Image.open(image_path).convert("RGB")
# Load label
label_path = image_path.replace(".jpg", ".bin")
with open(label_path, "rb") as f:
label: FontLabel = pickle.load(f)
# encode label
label = self.fontlabel2tensor(label, label_path)
# data augmentation
if self.transforms:
transform = transforms.Compose(
[
RandomColorJitter(),
RandomCrop(),
]
)
image, label = transform((image, label))
# resize and to tensor
transform = transforms.Compose(
[
transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
transforms.ToTensor(),
]
)
image = transform(image)
# normalize label
if self.regression_use_tanh:
label[2:12] = label[2:12] * 2 - 1
return image, label
class FontDataModule(LightningDataModule):
def __init__(
self,
config_path: str = "configs/font.yml",
train_path: str = "./dataset/font_img/train",
val_path: str = "./dataset/font_img/val",
test_path: str = "./dataset/font_img/test",
train_shuffle: bool = True,
val_shuffle: bool = False,
test_shuffle: bool = False,
train_transforms: bool = False,
val_transforms: bool = False,
test_transforms: bool = False,
regression_use_tanh: bool = False,
**kwargs,
):
super().__init__()
self.dataloader_args = kwargs
self.train_shuffle = train_shuffle
self.val_shuffle = val_shuffle
self.test_shuffle = test_shuffle
self.train_dataset = FontDataset(
train_path, config_path, regression_use_tanh, train_transforms
)
self.val_dataset = FontDataset(
val_path, config_path, regression_use_tanh, val_transforms
)
self.test_dataset = FontDataset(
test_path, config_path, regression_use_tanh, test_transforms
)
def get_train_num_iter(self, num_device: int) -> int:
return math.ceil(
len(self.train_dataset) / (self.dataloader_args["batch_size"] * num_device)
)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
shuffle=self.train_shuffle,
**self.dataloader_args,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
shuffle=self.val_shuffle,
**self.dataloader_args,
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
shuffle=self.test_shuffle,
**self.dataloader_args,
)
|