gyrojeff commited on
Commit
3163344
·
1 Parent(s): fdd1362

feat: add training script

Browse files
Files changed (1) hide show
  1. train.py +74 -0
train.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pytorch_lightning as ptl
3
+ from pytorch_lightning.loggers import TensorBoardLogger
4
+
5
+ from detector.data import FontDataModule
6
+ from detector.model import FontDetector, ResNet18Regressor
7
+ from utils import get_current_tag
8
+
9
+
10
+ devices = [6, 7]
11
+
12
+ final_batch_size = 128
13
+ single_device_num_workers = 24
14
+
15
+
16
+ lr = 0.0001
17
+ b1 = 0.9
18
+ b2 = 0.999
19
+
20
+ lambda_font = 2.0
21
+ lambda_direction = 0.5
22
+ lambda_regression = 1.0
23
+
24
+ num_warmup_epochs = 10
25
+ num_epochs = 100
26
+
27
+ log_every_n_steps = 100
28
+
29
+ num_device = len(devices)
30
+
31
+ data_module = FontDataModule(
32
+ batch_size=final_batch_size // num_device,
33
+ num_workers=single_device_num_workers,
34
+ pin_memory=True,
35
+ train_shuffle=True,
36
+ val_shuffle=False,
37
+ test_shuffle=False,
38
+ )
39
+
40
+ num_iters = data_module.get_train_num_iter(num_device) * num_epochs
41
+ num_warmup_iter = data_module.get_train_num_iter(num_device) * num_warmup_epochs
42
+
43
+ model_name = f"{get_current_tag()}"
44
+
45
+ logger_unconditioned = TensorBoardLogger(
46
+ save_dir=os.getcwd(), name="tensorboard", version=model_name
47
+ )
48
+
49
+ strategy = None if num_device == 1 else "ddp"
50
+
51
+ trainer = ptl.Trainer(
52
+ max_epochs=num_epochs,
53
+ logger=logger_unconditioned,
54
+ devices=devices,
55
+ accelerator="gpu",
56
+ enable_checkpointing=True,
57
+ log_every_n_steps=log_every_n_steps,
58
+ strategy=strategy,
59
+ )
60
+
61
+ model = ResNet18Regressor()
62
+
63
+ detector = FontDetector(
64
+ model=model,
65
+ lambda_font=lambda_font,
66
+ lambda_direction=lambda_direction,
67
+ lambda_regression=lambda_regression,
68
+ lr=lr,
69
+ betas=(b1, b2),
70
+ num_warmup_iters=num_warmup_iter,
71
+ num_iters=num_iters,
72
+ )
73
+
74
+ trainer.fit(detector, datamodule=data_module)