Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
import threading | |
import os | |
# caching the mode | |
model_cache = {} | |
tokenizer_cache = {} | |
model_lock = threading.Lock() | |
from huggingface_hub import login | |
hf_token = os.environ.get('hf_token', None) | |
# Define the models and their paths | |
model_paths = { | |
"H2OVL-Mississippi-2B":"h2oai/h2ovl-mississippi-2b", | |
"H2OVL-Mississippi-0.8B":"h2oai/h2ovl-mississippi-800m", | |
# Add more models as needed | |
} | |
example_prompts = [ | |
"Read the text and provide word by word ocr for the document. <doc>", | |
"Read the text on the image", | |
"Extract the text from the image.", | |
"Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}", | |
"Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount", | |
] | |
# Function to handle task type logic | |
def handle_task_type(task_type, model_name): | |
max_new_tokens = 1024 # Default value | |
if task_type == "OCR": | |
max_new_tokens = 3072 # Adjust for OCR | |
return max_new_tokens | |
# Function to handle task type logic and default question | |
def handle_task_type_and_prompt(task_type, model_name): | |
max_new_tokens = handle_task_type(task_type, model_name) | |
default_question = example_prompts[0] if task_type == "OCR" else None | |
return max_new_tokens, default_question | |
def update_task_type_on_model_change(model_name): | |
# Set default task type and max_new_tokens based on the model | |
if '2b' in model_name.lower(): | |
return "Document extractor", handle_task_type("Document extractor", model_name) | |
elif '0.8b' in model_name.lower(): | |
return "OCR", handle_task_type("OCR", model_name) | |
else: | |
return "Chat", handle_task_type("Chat", model_name) | |
def load_model_and_set_image_function(model_name): | |
# Get the model path from the model_paths dictionary | |
model_path = model_paths[model_name] | |
with model_lock: | |
if model_name in model_cache: | |
# model is already loaded; retrieve it from the cache | |
print(f"Model {model_name} is already loaded. Retrieving from cache.") | |
else: | |
# load the model and tokenizer | |
print(f"Loading model {model_name}...") | |
model = AutoModel.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
use_auth_token=hf_token, | |
# device_map="auto" | |
).eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, | |
trust_remote_code=True, | |
use_fast=False, | |
use_auth_token=hf_token | |
) | |
# add the model and tokenizer to the cache | |
model_cache[model_name] = model | |
tokenizer_cache[model_name] = tokenizer | |
print(f"Model {model_name} loaded successfully.") | |
return model_name | |
def inference(image_input, | |
user_message, | |
temperature, | |
top_p, | |
max_new_tokens, | |
tile_num, | |
chatbot, | |
state, | |
model_name): | |
# Check if model_state is None | |
if model_name is None: | |
chatbot.append(("System", "Please select a model to start the conversation.")) | |
return chatbot, state, "" | |
with model_lock: | |
if model_name not in model_cache: | |
chatbot.append(("System", "Model not loaded. Please wait for the model to load.")) | |
return chatbot, state, "" | |
model = model_cache[model_name] | |
tokenizer = tokenizer_cache[model_name] | |
# Check for empty or invalid user message | |
if not user_message or user_message.strip() == '' or user_message.lower() == 'system': | |
chatbot.append(("System", "Please enter a valid message to continue the conversation.")) | |
return chatbot, state, "" | |
# if image is provided, store it in image_state: | |
if chatbot is None: | |
chatbot = [] | |
if image_input is None: | |
chatbot.append(("System", "Please provide an image to start the conversation.")) | |
return chatbot, state, "" | |
# Initialize history (state) if it's None | |
if state is None: | |
state = None # model.chat function handles None as empty history | |
# Append user message to chatbot | |
chatbot.append((user_message, None)) | |
# Set generation config | |
do_sample = (float(temperature) != 0.0) | |
generation_config = dict( | |
num_beams=1, | |
max_new_tokens=int(max_new_tokens), | |
do_sample=do_sample, | |
temperature= float(temperature), | |
top_p= float(top_p), | |
) | |
# Call model.chat with history | |
if '2b' in model_name.lower(): | |
response_text, new_state = model.chat( | |
tokenizer, | |
image_input, | |
user_message, | |
max_tiles = int(tile_num), | |
generation_config=generation_config, | |
history=state, | |
return_history=True | |
) | |
if '0.8b' in model_name.lower(): | |
response_text, new_state = model.ocr( | |
tokenizer, | |
image_input, | |
user_message, | |
max_tiles = int(tile_num), | |
generation_config=generation_config, | |
history=state, | |
return_history=True | |
) | |
# update the satet with new_state | |
state = new_state | |
# Update chatbot with the model's response | |
chatbot[-1] = (user_message, response_text) | |
return chatbot, state, "" | |
def regenerate_response(chatbot, | |
temperature, | |
top_p, | |
max_new_tokens, | |
tile_num, | |
state, | |
image_input, | |
model_name): | |
# Check if model_state is None | |
if model_name is None: | |
chatbot.append(("System", "Please select a model to start the conversation.")) | |
return chatbot, state | |
with model_lock: | |
if model_name not in model_cache: | |
chatbot.append(("System", "Model not loaded. Please wait for the model to load.")) | |
return chatbot, state | |
model = model_cache[model_name] | |
tokenizer = tokenizer_cache[model_name] | |
# Check if there is a previous user message | |
if chatbot is None or len(chatbot) == 0: | |
chatbot = [] | |
chatbot.append(("System", "Nothing to regenerate. Please start a conversation first.")) | |
return chatbot, state, | |
# Get the last user message | |
last_user_message, _ = chatbot[-1] | |
# Check for empty or invalid last user message | |
if not last_user_message or last_user_message.strip() == '' or last_user_message.lower() == 'system': | |
chatbot.append(("System", "Cannot regenerate response for an empty or invalid message.")) | |
return chatbot, state | |
# Remove last assistant's response from state | |
if state is not None and len(state) > 0: | |
state = state[:-1] # Remove last assistant's response from history | |
if len(state) == 0: | |
state = None | |
else: | |
state = None | |
# Set generation config | |
do_sample = (float(temperature) != 0.0) | |
generation_config = dict( | |
num_beams=1, | |
max_new_tokens=int(max_new_tokens), | |
do_sample=do_sample, | |
temperature= float(temperature), | |
top_p= float(top_p), | |
) | |
# Regenerate the response | |
if '2b' in model_name.lower(): | |
response_text, new_state = model.chat( | |
tokenizer, | |
image_input, | |
last_user_message, | |
max_tiles = int(tile_num), | |
generation_config=generation_config, | |
history=state, # Exclude last assistant's response | |
return_history=True | |
) | |
if '0.8b' in model_name.lower(): | |
response_text, new_state = model.ocr( | |
tokenizer, | |
image_input, | |
last_user_message, | |
max_tiles = int(tile_num), | |
generation_config=generation_config, | |
history=state, # Exclude last assistant's response | |
return_history=True | |
) | |
# Update the state with new_state | |
state = new_state | |
# Update chatbot with the regenerated response | |
chatbot[-1] = (last_user_message, response_text) | |
return chatbot, state | |
def clear_all(): | |
return [], None, None, "" # Clear chatbot, state, reset image_input | |
title_html = """ | |
<h1> <span class="gradient-text" id="text">H2OVL-Mississippi</span><span class="plain-text">: Lightweight Vision Language Models for OCR and Doc AI tasks</span></h1> | |
<a href="https://huggingface.co/collections/h2oai/h2ovl-mississippi-66e492da45da0a1b7ea7cf39">[😊 Hugging Face]</a> | |
<a href="https://arxiv.org/abs/2410.13611">[📜 Paper]</a> | |
<a href="https://huggingface.co/spaces/h2oai/h2ovl-mississippi-benchmarks">[🌟 Benchmarks]</a> | |
""" | |
# Build the Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML(title_html) | |
gr.HTML(""" | |
<style> | |
.gradient-text { | |
font-size: 36px !important; | |
font-weight: bold !important; | |
} | |
.plain-text { | |
font-size: 32px !important; | |
} | |
h1 { | |
margin-bottom: 20px !important; | |
} | |
</style> | |
""") | |
state= gr.State() | |
model_state = gr.State() | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
choices=list(model_paths.keys()), | |
label="Select Model", | |
value="H2OVL-Mississippi-2B" | |
) | |
task_type_dropdown = gr.Dropdown( | |
choices=["OCR", "Document extractor", "Chat"], | |
label="Select Task Type", | |
value="Document extractor" | |
) | |
with gr.Row(equal_height=True): | |
# First column with image input | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="filepath", label="Upload an Image") | |
# Second column with chatbot and user input | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot(label="Conversation") | |
user_input = gr.Dropdown(label="What is your question", | |
choices = example_prompts, | |
value=None, | |
allow_custom_value=True, | |
interactive=True) | |
def reset_chatbot_state(): | |
# reset chatbot and state | |
return [], None | |
# When the model selection changes, load the new model | |
model_dropdown.change( | |
fn=load_model_and_set_image_function, | |
inputs=[model_dropdown], | |
outputs=[model_state] | |
) | |
model_dropdown.change( | |
fn=reset_chatbot_state, | |
inputs=None, | |
outputs=[chatbot, state] | |
) | |
# Reset chatbot and state when image input changes | |
image_input.change( | |
fn=reset_chatbot_state, | |
inputs=None, | |
outputs=[chatbot, state] | |
) | |
# Load the default model when the app starts | |
demo.load( | |
fn=load_model_and_set_image_function, | |
inputs=[model_dropdown], | |
outputs=[model_state] | |
) | |
with gr.Accordion('Parameters', open=False): | |
with gr.Row(): | |
temperature_input = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.2, | |
interactive=True, | |
label="Temperature") | |
top_p_input = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
interactive=True, | |
label="Top P") | |
max_new_tokens_input = gr.Slider( | |
minimum=64, | |
maximum=4096, | |
step=64, | |
value=1024, | |
interactive=True, | |
label="Max New Tokens (default: 1024)") | |
tile_num = gr.Slider( | |
minimum=2, | |
maximum=12, | |
step=1, | |
value=6, | |
interactive=True, | |
label="Tile Number (default: 6)" | |
) | |
model_dropdown.change( | |
fn=update_task_type_on_model_change, | |
inputs=[model_dropdown], | |
outputs=[task_type_dropdown, max_new_tokens_input] | |
) | |
task_type_dropdown.change( | |
fn=handle_task_type_and_prompt, | |
inputs=[task_type_dropdown, model_dropdown], | |
outputs=[max_new_tokens_input, user_input] | |
) | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
regenerate_button = gr.Button("Regenerate") | |
clear_button = gr.Button("Clear") | |
# When the submit button is clicked, call the inference function | |
submit_button.click( | |
fn=inference, | |
inputs=[ | |
image_input, | |
user_input, | |
temperature_input, | |
top_p_input, | |
max_new_tokens_input, | |
tile_num, | |
chatbot, | |
state, | |
model_state | |
], | |
outputs=[chatbot, state, user_input] | |
) | |
# When the regenerate button is clicked, re-run the last inference | |
regenerate_button.click( | |
fn=regenerate_response, | |
inputs=[ | |
chatbot, | |
temperature_input, | |
top_p_input, | |
max_new_tokens_input, | |
tile_num, | |
state, | |
image_input, | |
model_state | |
], | |
outputs=[chatbot, state] | |
) | |
clear_button.click( | |
fn=clear_all, | |
inputs=None, | |
outputs=[chatbot, state, image_input, user_input] | |
) | |
def example_clicked(image_value, user_input_value): | |
chatbot_value, state_value = [], None | |
return image_value, user_input_value, chatbot_value, state_value # Reset chatbot and state | |
gr.Examples( | |
examples=[ | |
["assets/handwritten-note-example.jpg", "Read the text and provide word by word ocr for the document. <doc>"], | |
["assets/rental_application.png", "Read the text and provide word by word ocr for the document. <doc>"], | |
["assets/receipt.jpg", "Read the text and provide word by word ocr for the document. <doc>"], | |
["assets/driver_license.png", "Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}"], | |
["assets/invoice.png", "Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount"], | |
["assets/CBA-1H23-Results-Presentation_wheel.png", "What is the efficiency of H2O.AI in document processing?"], | |
], | |
inputs = [image_input, user_input], | |
outputs = [image_input, user_input, chatbot, state], | |
fn=example_clicked, | |
label = "examples", | |
) | |
demo.queue() | |
demo.launch(max_threads=10) |