File size: 4,370 Bytes
5d756f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import lzma
from dp2.detection.base import BaseDetector
from .utils import combine_cse_maskrcnn_dets
from .models.cse import CSEDetector
from .models.mask_rcnn import MaskRCNNDetector
from .models.keypoint_maskrcnn import KeypointMaskRCNN
from .structures import CSEPersonDetection, PersonDetection
from pathlib import Path


class CSEPersonDetector(BaseDetector):
    def __init__(
        self,
        score_threshold: float,
        mask_rcnn_cfg: dict,
        cse_cfg: dict,
        cse_post_process_cfg: dict,
        **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.mask_rcnn = MaskRCNNDetector(**mask_rcnn_cfg, score_thres=score_threshold)
        self.cse_detector = CSEDetector(**cse_cfg, score_thres=score_threshold)
        self.post_process_cfg = cse_post_process_cfg
        self.iou_combine_threshold = self.post_process_cfg.pop("iou_combine_threshold")

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

    def load_from_cache(self, cache_path: Path):
        with lzma.open(cache_path, "rb") as fp:
            state_dict = torch.load(fp)
        kwargs = dict(
            post_process_cfg=self.post_process_cfg,
            embed_map=self.cse_detector.embed_map,
        )
        return [
            state["cls"].from_state_dict(**kwargs, state_dict=state)
            for state in state_dict
        ]

    @torch.no_grad()
    def forward(self, im: torch.Tensor, cse_dets=None):
        mask_dets = self.mask_rcnn(im)
        if cse_dets is None:
            cse_dets = self.cse_detector(im)
        segmentation = mask_dets["segmentation"]
        segmentation, cse_dets, _ = combine_cse_maskrcnn_dets(
            segmentation, cse_dets, self.iou_combine_threshold
        )
        det = CSEPersonDetection(
            segmentation=segmentation,
            cse_dets=cse_dets,
            embed_map=self.cse_detector.embed_map,
            orig_imshape_CHW=im.shape,
            **self.post_process_cfg
        )
        return [det]


class MaskRCNNPersonDetector(BaseDetector):
    def __init__(
        self,
        score_threshold: float,
        mask_rcnn_cfg: dict,
        cse_post_process_cfg: dict,
        **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.mask_rcnn = MaskRCNNDetector(**mask_rcnn_cfg, score_thres=score_threshold)
        self.post_process_cfg = cse_post_process_cfg

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

    def load_from_cache(self, cache_path: Path):
        with lzma.open(cache_path, "rb") as fp:
            state_dict = torch.load(fp)
        kwargs = dict(
            post_process_cfg=self.post_process_cfg,
        )
        return [
            state["cls"].from_state_dict(**kwargs, state_dict=state)
            for state in state_dict
        ]

    @torch.no_grad()
    def forward(self, im: torch.Tensor):
        mask_dets = self.mask_rcnn(im)
        segmentation = mask_dets["segmentation"]
        det = PersonDetection(
            segmentation, **self.post_process_cfg, orig_imshape_CHW=im.shape
        )
        return [det]


class KeypointMaskRCNNPersonDetector(BaseDetector):
    def __init__(
        self,
        score_threshold: float,
        mask_rcnn_cfg: dict,
        cse_post_process_cfg: dict,
        **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.mask_rcnn = KeypointMaskRCNN(
            **mask_rcnn_cfg, score_threshold=score_threshold
        )
        self.post_process_cfg = cse_post_process_cfg

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

    def load_from_cache(self, cache_path: Path):
        with lzma.open(cache_path, "rb") as fp:
            state_dict = torch.load(fp)
        kwargs = dict(
            post_process_cfg=self.post_process_cfg,
        )
        return [
            state["cls"].from_state_dict(**kwargs, state_dict=state)
            for state in state_dict
        ]

    @torch.no_grad()
    def forward(self, im: torch.Tensor):
        mask_dets = self.mask_rcnn(im)
        segmentation = mask_dets["segmentation"]
        det = PersonDetection(
            segmentation,
            **self.post_process_cfg,
            orig_imshape_CHW=im.shape,
            keypoints=mask_dets["keypoints"]
        )
        return [det]