File size: 6,689 Bytes
60ee370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator

# Translator instance
translator = GoogleTranslator(source="auto", target="es")

# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
    SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]

with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
    OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]

# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]

def get_keywords_by_language(text: str):
    """
    Detect language using `langdetect` and translate keywords if needed.
    """
    snippet = text[:200]
    try:
        detected_lang = detect(snippet)
    except Exception:
        detected_lang = "en"

    if detected_lang == "es":
        smishing_in_spanish = [
            translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
        ]
        other_scam_in_spanish = [
            translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
        ]
        return smishing_in_spanish, other_scam_in_spanish, "es"
    else:
        return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"

def boost_probabilities(probabilities: dict, text: str):
    """
    Boost probabilities based on keyword matches and presence of URLs.
    """
    lower_text = text.lower()
    smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)

    smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
    other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)

    smishing_boost = 0.30 * smishing_count
    other_scam_boost = 0.30 * other_scam_count

    found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
    if found_urls:
        smishing_boost += 0.35

    p_smishing = probabilities.get("SMiShing", 0.0)
    p_other_scam = probabilities.get("Other Scam", 0.0)
    p_legit = probabilities.get("Legitimate", 1.0)

    p_smishing += smishing_boost
    p_other_scam += other_scam_boost
    p_legit -= (smishing_boost + other_scam_boost)

    # Clamp
    p_smishing = max(p_smishing, 0.0)
    p_other_scam = max(p_other_scam, 0.0)
    p_legit = max(p_legit, 0.0)

    # Re-normalize
    total = p_smishing + p_other_scam + p_legit
    if total > 0:
        p_smishing /= total
        p_other_scam /= total
        p_legit /= total
    else:
        p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0

    return {
        "SMiShing": p_smishing,
        "Other Scam": p_other_scam,
        "Legitimate": p_legit,
        "detected_lang": detected_lang
    }

def smishing_detector(input_type, text, image):
    """
    Only use the textbox if input_type == "Text",
    otherwise perform OCR on the image if input_type == "Screenshot".
    """
    if input_type == "Text":
        combined_text = text.strip() if text else ""
    else:
        # input_type == "Screenshot"
        combined_text = ""
        if image is not None:
            combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()

    if not combined_text:
        return {
            "text_used_for_classification": "(none)",
            "label": "No text provided",
            "confidence": 0.0,
            "keywords_found": [],
            "urls_found": []
        }

    # Zero-shot classification
    result = classifier(
        sequences=combined_text,
        candidate_labels=CANDIDATE_LABELS,
        hypothesis_template="This message is {}."
    )
    original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}

    # Boost logic
    boosted = boost_probabilities(original_probs, combined_text)
    boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}

    detected_lang = boosted.pop("detected_lang", "en")
    final_label = max(boosted, key=boosted.get)
    final_confidence = round(boosted[final_label], 3)

    lower_text = combined_text.lower()
    smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)

    found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
    found_smishing = [kw for kw in smishing_keys if kw in lower_text]
    found_other_scam = [kw for kw in scam_keys if kw in lower_text]

    return {
        "detected_language": detected_lang,
        "text_used_for_classification": combined_text,
        "original_probabilities": {
            k: round(v, 3) for k, v in original_probs.items()
        },
        "boosted_probabilities": {
            k: round(v, 3) for k, v in boosted.items()
        },
        "label": final_label,
        "confidence": final_confidence,
        "smishing_keywords_found": found_smishing,
        "other_scam_keywords_found": found_other_scam,
        "urls_found": found_urls,
    }

#
# Gradio interface with dynamic visibility
#
def toggle_inputs(choice):
    """
    Return updates for (text_input, image_input) based on the radio selection.
    """
    if choice == "Text":
        # Show text input, hide image
        return gr.update(visible=True), gr.update(visible=False)
    else:
        # choice == "Screenshot"
        # Hide text input, show image
        return gr.update(visible=False), gr.update(visible=True)

with gr.Blocks() as demo:
    gr.Markdown("## SMiShing & Scam Detector (Choose Text or Screenshot)")
    
    with gr.Row():
        input_type = gr.Radio(
            choices=["Text", "Screenshot"], 
            value="Text", 
            label="Choose Input Type"
        )

    text_input = gr.Textbox(
        lines=3,
        label="Paste Suspicious SMS Text",
        placeholder="Type or paste the message here...",
        visible=True  # default
    )

    image_input = gr.Image(
        type="pil",
        label="Upload Screenshot",
        visible=False  # hidden by default
    )

    # Whenever input_type changes, toggle which input is visible
    input_type.change(
        fn=toggle_inputs,
        inputs=input_type,
        outputs=[text_input, image_input],
        queue=False
    )

    # Button to run classification
    analyze_btn = gr.Button("Classify")
    output_json = gr.JSON(label="Result")

    # On button click, call the smishing_detector
    analyze_btn.click(
        fn=smishing_detector,
        inputs=[input_type, text_input, image_input],
        outputs=output_json
    )

if __name__ == "__main__":
    demo.launch()