Spaces:
Sleeping
Sleeping
hackerbyhobby
commited on
working good1
Browse files- app.py +8 -88
- app.py.jan27 +245 -0
app.py
CHANGED
@@ -5,22 +5,6 @@ from transformers import pipeline
|
|
5 |
import re
|
6 |
from langdetect import detect
|
7 |
from deep_translator import GoogleTranslator
|
8 |
-
import shap
|
9 |
-
import requests
|
10 |
-
import json
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
-
from shap.maskers import Text
|
14 |
-
|
15 |
-
# Patch SHAP to replace np.bool with np.bool_ dynamically
|
16 |
-
if hasattr(shap.maskers._text.Text, "invariants"):
|
17 |
-
original_invariants = shap.maskers._text.Text.invariants
|
18 |
-
|
19 |
-
def patched_invariants(self, *args):
|
20 |
-
# Use np.bool_ instead of the deprecated np.bool
|
21 |
-
return np.zeros(len(self._tokenized_s), dtype=np.bool_)
|
22 |
-
|
23 |
-
shap.maskers._text.Text.invariants = patched_invariants
|
24 |
|
25 |
# Translator instance
|
26 |
translator = GoogleTranslator(source="auto", target="es")
|
@@ -37,49 +21,6 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
37 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
38 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
39 |
|
40 |
-
# 3. SHAP Explainer Setup
|
41 |
-
explainer = shap.Explainer(classifier, masker=Text(tokenizer=classifier.tokenizer))
|
42 |
-
|
43 |
-
# Retrieve the Google Safe Browsing API key from the environment
|
44 |
-
SAFE_BROWSING_API_KEY = os.getenv("SAFE_BROWSING_API_KEY")
|
45 |
-
|
46 |
-
if not SAFE_BROWSING_API_KEY:
|
47 |
-
raise ValueError("Google Safe Browsing API key not found. Please set it as an environment variable in your Hugging Face Space.")
|
48 |
-
|
49 |
-
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
|
50 |
-
|
51 |
-
def check_url_with_google_safebrowsing(url):
|
52 |
-
"""
|
53 |
-
Check a URL against Google's Safe Browsing API.
|
54 |
-
"""
|
55 |
-
payload = {
|
56 |
-
"client": {
|
57 |
-
"clientId": "your-client-id",
|
58 |
-
"clientVersion": "1.0"
|
59 |
-
},
|
60 |
-
"threatInfo": {
|
61 |
-
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
|
62 |
-
"platformTypes": ["ANY_PLATFORM"],
|
63 |
-
"threatEntryTypes": ["URL"],
|
64 |
-
"threatEntries": [
|
65 |
-
{"url": url}
|
66 |
-
]
|
67 |
-
}
|
68 |
-
}
|
69 |
-
try:
|
70 |
-
response = requests.post(
|
71 |
-
SAFE_BROWSING_URL,
|
72 |
-
params={"key": SAFE_BROWSING_API_KEY},
|
73 |
-
json=payload
|
74 |
-
)
|
75 |
-
response_data = response.json()
|
76 |
-
if "matches" in response_data:
|
77 |
-
return True # URL is flagged as malicious
|
78 |
-
return False # URL is safe
|
79 |
-
except Exception as e:
|
80 |
-
print(f"Error checking URL with Safe Browsing API: {e}")
|
81 |
-
return False
|
82 |
-
|
83 |
def get_keywords_by_language(text: str):
|
84 |
"""
|
85 |
Detect language using `langdetect` and translate keywords if needed.
|
@@ -142,21 +83,9 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
142 |
"SMiShing": p_smishing,
|
143 |
"Other Scam": p_other_scam,
|
144 |
"Legitimate": p_legit,
|
145 |
-
"detected_lang": detected_lang
|
146 |
}
|
147 |
|
148 |
-
def explain_classification(text):
|
149 |
-
"""
|
150 |
-
Generate SHAP explanations for the classification.
|
151 |
-
"""
|
152 |
-
if not text.strip():
|
153 |
-
raise ValueError("Cannot generate SHAP explanations for empty text.")
|
154 |
-
|
155 |
-
shap_values = explainer([text])
|
156 |
-
shap.force_plot(
|
157 |
-
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
|
158 |
-
)
|
159 |
-
|
160 |
def smishing_detector(text, image):
|
161 |
"""
|
162 |
Main detection function combining text and OCR.
|
@@ -173,8 +102,7 @@ def smishing_detector(text, image):
|
|
173 |
"label": "No text provided",
|
174 |
"confidence": 0.0,
|
175 |
"keywords_found": [],
|
176 |
-
"urls_found": []
|
177 |
-
"threat_analysis": "No URLs to analyze",
|
178 |
}
|
179 |
|
180 |
result = classifier(
|
@@ -197,14 +125,6 @@ def smishing_detector(text, image):
|
|
197 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
198 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
199 |
|
200 |
-
# Analyze URLs using Google's Safe Browsing API
|
201 |
-
threat_analysis = {
|
202 |
-
url: check_url_with_google_safebrowsing(url) for url in found_urls
|
203 |
-
}
|
204 |
-
|
205 |
-
# SHAP Explanation (optional for user insights)
|
206 |
-
explain_classification(combined_text)
|
207 |
-
|
208 |
return {
|
209 |
"detected_language": detected_lang,
|
210 |
"text_used_for_classification": combined_text,
|
@@ -215,7 +135,6 @@ def smishing_detector(text, image):
|
|
215 |
"smishing_keywords_found": found_smishing,
|
216 |
"other_scam_keywords_found": found_other_scam,
|
217 |
"urls_found": found_urls,
|
218 |
-
"threat_analysis": threat_analysis,
|
219 |
}
|
220 |
|
221 |
demo = gr.Interface(
|
@@ -232,14 +151,15 @@ demo = gr.Interface(
|
|
232 |
)
|
233 |
],
|
234 |
outputs="json",
|
235 |
-
title="SMiShing & Scam Detector
|
236 |
description="""
|
237 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
238 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
242 |
)
|
243 |
|
244 |
if __name__ == "__main__":
|
245 |
-
demo.launch()
|
|
|
5 |
import re
|
6 |
from langdetect import detect
|
7 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Translator instance
|
10 |
translator = GoogleTranslator(source="auto", target="es")
|
|
|
21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_keywords_by_language(text: str):
|
25 |
"""
|
26 |
Detect language using `langdetect` and translate keywords if needed.
|
|
|
83 |
"SMiShing": p_smishing,
|
84 |
"Other Scam": p_other_scam,
|
85 |
"Legitimate": p_legit,
|
86 |
+
"detected_lang": detected_lang
|
87 |
}
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def smishing_detector(text, image):
|
90 |
"""
|
91 |
Main detection function combining text and OCR.
|
|
|
102 |
"label": "No text provided",
|
103 |
"confidence": 0.0,
|
104 |
"keywords_found": [],
|
105 |
+
"urls_found": []
|
|
|
106 |
}
|
107 |
|
108 |
result = classifier(
|
|
|
125 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
126 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
return {
|
129 |
"detected_language": detected_lang,
|
130 |
"text_used_for_classification": combined_text,
|
|
|
135 |
"smishing_keywords_found": found_smishing,
|
136 |
"other_scam_keywords_found": found_other_scam,
|
137 |
"urls_found": found_urls,
|
|
|
138 |
}
|
139 |
|
140 |
demo = gr.Interface(
|
|
|
151 |
)
|
152 |
],
|
153 |
outputs="json",
|
154 |
+
title="SMiShing & Scam Detector (Language Detection + Keyword Translation)",
|
155 |
description="""
|
156 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
157 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
158 |
+
If Spanish, it translates the English-based keyword lists to Spanish before boosting the scores.
|
159 |
+
Any URL found further boosts SMiShing specifically.
|
160 |
+
""",
|
161 |
+
allow_flagging="never"
|
162 |
)
|
163 |
|
164 |
if __name__ == "__main__":
|
165 |
+
demo.launch()
|
app.py.jan27
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pytesseract
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import pipeline
|
5 |
+
import re
|
6 |
+
from langdetect import detect
|
7 |
+
from deep_translator import GoogleTranslator
|
8 |
+
import shap
|
9 |
+
import requests
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
from shap.maskers import Text
|
14 |
+
|
15 |
+
# Patch SHAP to replace np.bool with np.bool_ dynamically
|
16 |
+
if hasattr(shap.maskers._text.Text, "invariants"):
|
17 |
+
original_invariants = shap.maskers._text.Text.invariants
|
18 |
+
|
19 |
+
def patched_invariants(self, *args):
|
20 |
+
# Use np.bool_ instead of the deprecated np.bool
|
21 |
+
return np.zeros(len(self._tokenized_s), dtype=np.bool_)
|
22 |
+
|
23 |
+
shap.maskers._text.Text.invariants = patched_invariants
|
24 |
+
|
25 |
+
# Translator instance
|
26 |
+
translator = GoogleTranslator(source="auto", target="es")
|
27 |
+
|
28 |
+
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
|
29 |
+
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
30 |
+
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
31 |
+
|
32 |
+
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
|
33 |
+
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
34 |
+
|
35 |
+
# 2. Zero-Shot Classification Pipeline
|
36 |
+
model_name = "joeddav/xlm-roberta-large-xnli"
|
37 |
+
classifier = pipeline("zero-shot-classification", model=model_name)
|
38 |
+
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
39 |
+
|
40 |
+
# 3. SHAP Explainer Setup
|
41 |
+
explainer = shap.Explainer(classifier, masker=Text(tokenizer=classifier.tokenizer))
|
42 |
+
|
43 |
+
# Retrieve the Google Safe Browsing API key from the environment
|
44 |
+
SAFE_BROWSING_API_KEY = os.getenv("SAFE_BROWSING_API_KEY")
|
45 |
+
|
46 |
+
if not SAFE_BROWSING_API_KEY:
|
47 |
+
raise ValueError("Google Safe Browsing API key not found. Please set it as an environment variable in your Hugging Face Space.")
|
48 |
+
|
49 |
+
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
|
50 |
+
|
51 |
+
def check_url_with_google_safebrowsing(url):
|
52 |
+
"""
|
53 |
+
Check a URL against Google's Safe Browsing API.
|
54 |
+
"""
|
55 |
+
payload = {
|
56 |
+
"client": {
|
57 |
+
"clientId": "your-client-id",
|
58 |
+
"clientVersion": "1.0"
|
59 |
+
},
|
60 |
+
"threatInfo": {
|
61 |
+
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
|
62 |
+
"platformTypes": ["ANY_PLATFORM"],
|
63 |
+
"threatEntryTypes": ["URL"],
|
64 |
+
"threatEntries": [
|
65 |
+
{"url": url}
|
66 |
+
]
|
67 |
+
}
|
68 |
+
}
|
69 |
+
try:
|
70 |
+
response = requests.post(
|
71 |
+
SAFE_BROWSING_URL,
|
72 |
+
params={"key": SAFE_BROWSING_API_KEY},
|
73 |
+
json=payload
|
74 |
+
)
|
75 |
+
response_data = response.json()
|
76 |
+
if "matches" in response_data:
|
77 |
+
return True # URL is flagged as malicious
|
78 |
+
return False # URL is safe
|
79 |
+
except Exception as e:
|
80 |
+
print(f"Error checking URL with Safe Browsing API: {e}")
|
81 |
+
return False
|
82 |
+
|
83 |
+
def get_keywords_by_language(text: str):
|
84 |
+
"""
|
85 |
+
Detect language using `langdetect` and translate keywords if needed.
|
86 |
+
"""
|
87 |
+
snippet = text[:200] # Use a snippet for detection
|
88 |
+
try:
|
89 |
+
detected_lang = detect(snippet)
|
90 |
+
except Exception:
|
91 |
+
detected_lang = "en" # Default to English if detection fails
|
92 |
+
|
93 |
+
if detected_lang == "es":
|
94 |
+
smishing_in_spanish = [
|
95 |
+
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
96 |
+
]
|
97 |
+
other_scam_in_spanish = [
|
98 |
+
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
|
99 |
+
]
|
100 |
+
return smishing_in_spanish, other_scam_in_spanish, "es"
|
101 |
+
else:
|
102 |
+
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
103 |
+
|
104 |
+
def boost_probabilities(probabilities: dict, text: str):
|
105 |
+
"""
|
106 |
+
Boost probabilities based on keyword matches and presence of URLs.
|
107 |
+
"""
|
108 |
+
lower_text = text.lower()
|
109 |
+
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
|
110 |
+
|
111 |
+
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
112 |
+
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
113 |
+
|
114 |
+
smishing_boost = 0.30 * smishing_count
|
115 |
+
other_scam_boost = 0.30 * other_scam_count
|
116 |
+
|
117 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
118 |
+
if found_urls:
|
119 |
+
smishing_boost += 0.35
|
120 |
+
|
121 |
+
p_smishing = probabilities.get("SMiShing", 0.0)
|
122 |
+
p_other_scam = probabilities.get("Other Scam", 0.0)
|
123 |
+
p_legit = probabilities.get("Legitimate", 1.0)
|
124 |
+
|
125 |
+
p_smishing += smishing_boost
|
126 |
+
p_other_scam += other_scam_boost
|
127 |
+
p_legit -= (smishing_boost + other_scam_boost)
|
128 |
+
|
129 |
+
p_smishing = max(p_smishing, 0.0)
|
130 |
+
p_other_scam = max(p_other_scam, 0.0)
|
131 |
+
p_legit = max(p_legit, 0.0)
|
132 |
+
|
133 |
+
total = p_smishing + p_other_scam + p_legit
|
134 |
+
if total > 0:
|
135 |
+
p_smishing /= total
|
136 |
+
p_other_scam /= total
|
137 |
+
p_legit /= total
|
138 |
+
else:
|
139 |
+
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
140 |
+
|
141 |
+
return {
|
142 |
+
"SMiShing": p_smishing,
|
143 |
+
"Other Scam": p_other_scam,
|
144 |
+
"Legitimate": p_legit,
|
145 |
+
"detected_lang": detected_lang,
|
146 |
+
}
|
147 |
+
|
148 |
+
def explain_classification(text):
|
149 |
+
"""
|
150 |
+
Generate SHAP explanations for the classification.
|
151 |
+
"""
|
152 |
+
if not text.strip():
|
153 |
+
raise ValueError("Cannot generate SHAP explanations for empty text.")
|
154 |
+
|
155 |
+
shap_values = explainer([text])
|
156 |
+
shap.force_plot(
|
157 |
+
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
|
158 |
+
)
|
159 |
+
|
160 |
+
def smishing_detector(text, image):
|
161 |
+
"""
|
162 |
+
Main detection function combining text and OCR.
|
163 |
+
"""
|
164 |
+
combined_text = text or ""
|
165 |
+
if image is not None:
|
166 |
+
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
167 |
+
combined_text += " " + ocr_text
|
168 |
+
combined_text = combined_text.strip()
|
169 |
+
|
170 |
+
if not combined_text:
|
171 |
+
return {
|
172 |
+
"text_used_for_classification": "(none)",
|
173 |
+
"label": "No text provided",
|
174 |
+
"confidence": 0.0,
|
175 |
+
"keywords_found": [],
|
176 |
+
"urls_found": [],
|
177 |
+
"threat_analysis": "No URLs to analyze",
|
178 |
+
}
|
179 |
+
|
180 |
+
result = classifier(
|
181 |
+
sequences=combined_text,
|
182 |
+
candidate_labels=CANDIDATE_LABELS,
|
183 |
+
hypothesis_template="This message is {}."
|
184 |
+
)
|
185 |
+
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
186 |
+
boosted = boost_probabilities(original_probs, combined_text)
|
187 |
+
|
188 |
+
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
189 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
190 |
+
final_label = max(boosted, key=boosted.get)
|
191 |
+
final_confidence = round(boosted[final_label], 3)
|
192 |
+
|
193 |
+
lower_text = combined_text.lower()
|
194 |
+
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
195 |
+
|
196 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
197 |
+
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
198 |
+
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
199 |
+
|
200 |
+
# Analyze URLs using Google's Safe Browsing API
|
201 |
+
threat_analysis = {
|
202 |
+
url: check_url_with_google_safebrowsing(url) for url in found_urls
|
203 |
+
}
|
204 |
+
|
205 |
+
# SHAP Explanation (optional for user insights)
|
206 |
+
explain_classification(combined_text)
|
207 |
+
|
208 |
+
return {
|
209 |
+
"detected_language": detected_lang,
|
210 |
+
"text_used_for_classification": combined_text,
|
211 |
+
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
|
212 |
+
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
|
213 |
+
"label": final_label,
|
214 |
+
"confidence": final_confidence,
|
215 |
+
"smishing_keywords_found": found_smishing,
|
216 |
+
"other_scam_keywords_found": found_other_scam,
|
217 |
+
"urls_found": found_urls,
|
218 |
+
"threat_analysis": threat_analysis,
|
219 |
+
}
|
220 |
+
|
221 |
+
demo = gr.Interface(
|
222 |
+
fn=smishing_detector,
|
223 |
+
inputs=[
|
224 |
+
gr.Textbox(
|
225 |
+
lines=3,
|
226 |
+
label="Paste Suspicious SMS Text (English/Spanish)",
|
227 |
+
placeholder="Type or paste the message here..."
|
228 |
+
),
|
229 |
+
gr.Image(
|
230 |
+
type="pil",
|
231 |
+
label="Or Upload a Screenshot (Optional)"
|
232 |
+
)
|
233 |
+
],
|
234 |
+
outputs="json",
|
235 |
+
title="SMiShing & Scam Detector with Safe Browsing",
|
236 |
+
description="""
|
237 |
+
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
238 |
+
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
239 |
+
It uses SHAP for explainability and checks URLs against Google's Safe Browsing API for enhanced analysis.
|
240 |
+
""",
|
241 |
+
flagging_mode="never"
|
242 |
+
)
|
243 |
+
|
244 |
+
if __name__ == "__main__":
|
245 |
+
demo.launch()
|